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DILOGARITHM AND HIGHER Z-INVARIANTS FOR GL;3(Q,)
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ABSTRACT. The primary purpose of this paper is to clarify the relation be-
tween previous results in [Ann. Sci. Ec. Norm. Supér. 44 (2011), pp. 43-145],
[Amer. J. Math. 141 (2019), pp. 661-703], and [Camb. J. Math. 8 (2020),
p. 775-951] via the construction of some interesting locally analytic repre-
sentations. Let E be a sufficiently large finite extension of Q, and p, be a
p-adic semi-stable representation Gal(Q,/Qp) — GL3(E) such that the as-
sociated Weil-Deligne representation WD(pp,) has rank two monodromy and
the associated Hodge filtration is non-critical. A computation of extensions
of rank one (¢, I')-modules shows that the Hodge filtration of p, depends
on three invariants in E. We construct a family of locally analytic rep-
resentations MM (X, A, %, %) of GL3(Qp) depending on three invariants
L, %, L3 € E, such that each representation in the family contains the
locally algebraic representation Alg ® Steinberg determined by WD(pp) (via
classical local Langlands correspondence for GL3(Qp)) and the Hodge-Tate
weights of p,. When p, comes from an automorphic representation 7 of a
unitary group over Q which is compact at infinity, we show (under some tech-
nical assumption) that there is a unique locally analytic representation in the
above family that occurs as a subrepresentation of the Hecke eigenspace (as-
sociated with ) in the completed cohomology. We note that [Amer. J. Math.
141 (2019), pp. 611-703] constructs a family of locally analytic representations
depending on four invariants ( cf. (4) in that publication ) and proves that
there is a unique representation in this family that embeds into the Hecke
eigenspace above. We prove that if a representation II in Breuil’s family em-
beds into the Hecke eigenspace above, the embedding of I extends uniquely to
an embedding of a X™%(\, .Z, %, .%3) into the Hecke eigenspace, for certain
L, L, L3 € FE uniquely determined by II. This gives a purely representa-
tion theoretical necessary condition for II to embed into completed cohomol-
ogy. Moreover, certain natural subquotients of Y™™ (X, %, %, %) give an
explicit complex of locally analytic representations that realizes the derived
object £(A,.%) in (1.14) of [Ann. Sci. Ec. Norm. Supér. 44 (2011), pp. 43—
145]. Consequently, the locally analytic representation ™®(\, %, %%, %5)
gives a relation between the higher #-invariants studied in [Amer. J. Math.
141 (2019), pp. 611-703] as well as the work of Breuil and Ding and the p-adic
dilogarithm function which appears in the construction of X(\,.%) in [Ann.
Sci. Ec. Norm. Supér. 44 (2011), pp. 43-145].
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1. INTRODUCTION

Let p be a prime number and F' an imaginary quadratic extension of Q such
that p splits in F'. We fix a unitary group G over Q which splits over F and
such that G(R) is compact. Then to each finite extension E of Q, and to each
prime-to-p level UP in G(AOQO’p ), one can associate the Banach space of p-adic

automorphic forms S (UP, E). One can also associate with UP a set of finite places
D(UP) of Q and a Hecke algebra T(UP) which is the polynomial algebra freely
generated by Hecke operators at places of F' lying above D(UP). In particular, the
commutative algebra T(UP) acts on S (UP,E) and commutes with the action of
G(Qp) = GL,(Qp) coming from translations on G(Ag).

If p: Gal(F/F) — GL,,(E) is a continuous irreducible representation, one consid-
ers the associated Hecke eigenspace S (UP, E)[m,], which is a continuous admissible
representation of GL,,(Q,) over E, or its locally Q,-analytic vectors S(Ur, E)» [m,],
which is an admissible locally Q,-analytic representation of GL, (Q,). We fix w, to
be a place of F' above p. The philosophy of p-adic local Langlands correspondence

predicts that §(U”,E)[mp] (and its subspace §(UP,E)‘m[mp] as well) determines

and depends only on p, et p|Ga1(F—wp JFu)" The case n = 2 is well-known essentially

due to various results in [Col10] and [Eme]. The case n > 3 is much more difficult
and only a few partial results are known. We are particularly interested in the
case when the subspace of locally algebraic vectors S(UP, E)?l& [m,] C S, E)[m,]
is non-zero, which implies that p, is potentially semi-stable. Certain cases when
n = 3 and p, is semi-stable and non-crystalline have been studied in [Brel7] and
[BD20]. We are going to continue their work and obtain some interesting relation
between results in [Brel7], [BD20] and previous results in [Schrll] which involve
the p-adic dilogarithm function.

1.1. Construction of a family of representations. We consider a weight \ €
X(T)4 of the diagonal split torus T C GL3 which is dominant with respect to the
upper-triangular Borel subgroup. Given two locally analytic representations V7, V5
of GL3(Q,), we use the notation V3 — V, (resp. the notation Vi —— V4 ) for a
locally analytic representation corresponding to a non-zero (resp. possibly zero)
element in EXté;L;;(Q,,) (Va, V1). If we consider two elements in ExtéL3(Qp) (Va, V1)
that differ from each other by a non-zero scalar, then their corresponding represen-
tations are naturally isomorphic. In Section [Z3] we will introduce the generalized
analytic Steinberg representations (of weight A) St5"(X), v (), v (A), L(A) and
various irreducible locally analytic representations C7, ,, of GL;3(Q,), for certain

choices of x € {&, 1,2} and elements w,w’ in the Weyl group of GL3.

Theorem 1.1 (Proposition [6.2] Proposition [6.8 Proposition 612, (6.42))). For
each choice of A\ € X(T)4 and L, %, L5 € E, there exists a locally analytic
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representation Y™\, L, Ly, Ls) of GL3(Qy) of the form:

i 031751 — Z()\) RF ’Uj.;.z

an
oy — B =70
(1.1) St3™(A) — .
V() — — L(})
D 032752 — L()\) RF 7)});1)
Moreover, different choices of £, %, %5 € E give non-isomorphic representations.

We also construct a locally analytic representation L™+ (N %, %, %) D
YLmin(\ L, L, L) of the form

1
C /_ §281,8281 — ~2
T I @s e,
vp(A)
St3"(A)
(V) - ——

—
T 05275251

1 _
5182,8152

whose isomorphism class is uniquely determined by that of X™*(\, .4, %, . 43).
The following is our main result on local-global compatibility.

Theorem 1.2 (Theorem [(T]). Assume that p > 5 and n = 3. Assume moreover
that

(i) p is unramified at all finite places of F above D(U?);

(i) S(UP, E)m,]"e # 0;

(iii) pp is semi-stable with Hodge—Tate weights {k1 > ko > ks} such that N* #

0;
(iv) pp is non-critical in the sense of Remark 6.1.4 of [BrelT];
(v) only one automorphic representation contributes to S(UP, E)?& [m,].

Then there ezists a unique choice of 41, %, L5 € E such that §(UP,E)an[mp]
contains (copies of ) the locally analytic representation

it (N A L L) @ (ur(a) @p €2) o det

where X = (A1, A2, A3) = (k1 — 2,ka — 1,k3), and o € E* is determined by the
Weil-Deligne representation WD(p,) associated with p,. Moreover, we have

(1.2)
Homar,(a,) (Z" (A 24, %, %) @5 (ur(a) @5 £2) o det, (U7, B)™[m,])

= HomGL3(Qp) (Z(/\) ®E St5° @g (ur(a) Qp 52) o det, S'\(Up7 E)an[mp]) )
The assumptions of our Theorem are the same as that of Theorem 1.3 of

[Brel7]. Here we do not attempt to obtain any explicit relation between £, %, %5
€ F and p,, which is similar in flavor to Theorem 1.3 of [Brel7]. The improvement
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of our Theorem [[.2] upon Theorem 1.3 of [Brel7] will be explained in Section[[3 It
is worth mentioning that, under further technical assumptions that p, is ordinary
with consecutive Hodge—Tate weights and has an irreducible mod p reduction, one
can combine our Theorem [[2] with Theorem 7.52 of [BD20] and conclude that the
isomorphism class of XM (N £, %, %) and that of p, determine each other.

Remark 1.3. Tt is possible to construct a locally analytic representation ™ (X, %4,
Ly, %) of GL3(Q,) containing ™ (X, 4, %, %) which is characterized by the
fact that it is maximal (for inclusion) among the locally analytic representations V
satisfying the following conditions:
(i) socary(q, (V) =V = L(\) @p St3°;
(ii) each constituent of V' is a subquotient of a locally analytic principal series;
(iii) L(A) ®p St3° is a Jordan—Hélder factor of V' with multiplicity one,

where V28 is the subspace of locally algebraic vectors in V. Moreover, an imme-
diate generalization of the arguments in the proof of Theorem (and thus of
Theorem 1.1 of [Brel7]) shows that

(1.3) Homgr,(q,) (zmaX(A, L Lo, L) @ (ur(a) @p £2) o det, S(UP, E)an[mp])

= Homey,(q,) (f(/\) ®5 St3° @p (ur(a) ®p €2) o det, S(UP, E)an[m,,]) .

One can also show that
Zmax(/\’ LA, 5L, gg)/f()\) R g Sts

is independent of the choice of .4, %, % € E. However, the full construction of
ymax(\ A, L, L) is very lengthy and technical, and thus we decided not to put
it here.

1.2. Derived object and p-adic dilogarithm. We consider the bounded derived
category

D’ (Modp(arLy(Q,).2))
associated with the abelian category Modp(ar,(q,),r) of abstract modules over the
algebra D(GL3(Q,), E) consisting of locally Qp-analytic distributions on GL3(Q,,)
(cf. Section 4 of [ST03] for the definition of the algebra of distributions). Schraen
constructs an object

S\, Z)" € D’ (Modp(aLs(q,).B))

in Definition 5.19 of [Schril], and this construction crucially involves the p-adic
dilogarithm function. However, it was not clear in [Schrll] whether there exists an
explicit complex [C,] of locally analytic representations of GL3(Q,) whose strong
dual realizes X(\,.Z)’. Upon minor difference between the notation of [Schril] and
ours, we show that

Theorem 1.4 (Theorem @23)). There exists an explicit complex [Cs| of
locally analytic representations of GL3(Q,) such that the object

D' e D" (ModpcLy(a,).5))
associated with [CL,] satisfies

D' =¥%(\Z%) eD (MOdD(GLs(Qp)vE)) :



348 ZICHENG QIAN

1.3. Higher Z-invariants for GL3(Q,). It follows from (6.43) and (6.44) that
ymint (X L, %, %) can be described explicitly by the following picture:

1

C
/ 825178251\ )
/ 081’51 \ / 08175152
oo

e, \
N/ >
R L()!
Cslsgsl 1
. L(\)?

52,8251

Cl

§182,5152

Consequently, S™nF () ¥, %, %) contains a unique subrepresentation of the
form

02 — Cslzsl,l e C’ — 051251,3251 —_ 9
s1,l —— S8 — __— “s1,8182
L(\) ©p St 3 3
032,1 < — 052732 < _— 32,5231
C;1$2,1 05152,5152

which is denoted by
(1.4) L(\) ®p St5°

in Theorem 1.1 of [Brel7]. We write II for an arbitrary representation of the form
(T34). It follows from Theorem 1.2 of [Brel7| that

dimpExtér, q,)» (I'(k D), Z(V) ©5865) =3

for each ¢ = 1,2. Therefore all possible choices of Il form a family that de-
pends on four invariants in . However, a computation of extensions of rank
one (¢, I')-modules suggests that p, depends on three invariants in E. As a result,
Theorem 1.1 of [Brel] predicts that the existence of UP and p as well as an em-
bedding II — §(UP,E)a“[mp], should cut out a subfamily of I that depends on
three invariants. Motivated by Breuil’s prediction, we show the following

Theorem 1.5 (Corollary [[). If there exists UP and p such that II embeds into

~

S(UP,E)*[m,], then there exists L1, Ls, L3 € E such that II embeds into
Emin;‘r()‘agthugS)‘
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Moreover, the isomorphism class of I and that of Y™™+ (\, L4, L, L) where 11
embeds, uniquely determine each other.

1.4. Sketch of content. The overall goal of the sections before Section [1 is the
construction and study of the locally analytic representations ™ (\, %, %, %)
and Y\ L %, #3). In particular, the content of this paper from Section
to Section [0]is purely locally analytic representation theoretical.

In Section 2 we recall various well-known facts around locally analytic repre-
sentations of p-adic analytic groups, with more focus on GL2(Q,) and GL3(Q,).
In Section 23] we fix our notation for various locally analytic representations of
GL2(Qp) and GL3(Q,), including the notation for some irreducible admissible lo-
cally analytic representations for GL3(Q,) that will be frequently used in the rest of
the article. In Section [Z2] we recall a standard spectral sequence (cf. Lemma [2.1))
which will be frequently used in later computation of Ext-groups. In Section 2.4]
we fix a branch of the p-adic logarithm function, recall a branch of the p-adic
dilogarithm function from Section 5.3 of [Schrll] and interpret it as an element of a
certain ExtZy, +(Q,)-group following (5.57) of [Schr1l]. Using the fixed branch of the
p-adic logarithm function, we define a locally analytic representation (X, %4, %)
of GL3(Q,) that depends on two invariants %1, % € E (cf. the paragraph before
23).

In Section Bl we prove a crucial fact (Proposition [35) on the non-existence
of a locally analytic representation of GL2(Q,) of a certain specific form, which
can be interpreted as the vanishing of a certain ExtéLQ(Qp)—group. The proof of
Proposition 3.5l uses arguments involving infinitesimal characters of locally analytic
representations.

In Section d] we systematically present a list of computational results, grouped
into various Propositions and Lemmas. There exists a standard spectral sequence
(cf. Lemma 2T)) to compute certain Extqr,(q,)-groups using results on Np(Q,)-
homology of admissible locally analytic representations of GL3(Q)), where Np is
the unipotent radical of a maximal parabolic subgroup P C GL3. Consequently,
our computation in Section ] makes extensive use of results on Np(Q,)-homology,
most notably Théoreme 4.10 of [Schrll] (a classical Theorem by Kostant) as well
as Section 5.2 and 5.3 of [Brel7] (based on the lists between (4.117) and (4.134)
of [Schrll]). The readers may skip Section Ml during a first reading. While reading
Section Bl and Bl the reader may check the lists in Section [ whenever necessary.

In Section Bl we prove various technical results on Ext-groups that will be directly
used in the construction and study of L™ (), %, %, . %) (which appears in Sec-
tion [). On the one hand, we prove in Proposition [5.4] the non-existence of locally
analytic representations of GL3(Q,) of certain specific forms, using Proposition [3.5]
as a crucial input. On the other hand, we compute or estimate the dimension of
various ExtéLS(QP) and ExtQGLS(QP) in Lemma 53] 5.5 5.7 6.8 and Technically
speaking, the information on dimensions of these Ext-groups will be crucial for us
to manipulate various long exact sequences in Section [l

Section[0]is the heart of this paper, where we construct and study the representa-
tion XM\, 2, %, %) and its variant. In Section [6.1] we finish the construction
of I\, L, %L, %) (cf. Proposition 6.8 and the paragraph before ([6.28)), and
then prove a technical result (cf. Proposition [6I0) which will be crucial in the
proof of Theorem [[Jl In Section [6.2] we further clarify the structure of various
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subrepresentations of XM (), .4, %, #3) and obtain an explicit description of ex-
tensions inside XM (\, 24, %, . %43) (cf. ([6.42) and ([6.43)). In order to clarify the
relation between our X™R(\, .4, %, .#3) and various representations constructed
in [Brel7] (cf. the proof of Theorem [[] for details), we also consider a slightly big-
ger representation MM (N L, L, L) D XM\ A, L, L), In Section B3]
we obtain as byproduct an explicit complex (cf. Theorem [6.15]) of locally analytic
representations of GL3(Q,) that realizes the derived object X(\,.£)" constructed
in [Schr1i].

In Section [, we prove Theorem [I.1] by combining Proposition with the
technique (recalled or reformulated in Proposition [[2] [[3] and [[4]) from the proof
of Théoreme 6.2.1 of [Brel7]. At the end, we give a purely representation theoret-
ical criterion for a representation of the form (4] to embed into the completed
cohomology (cf. Corollary [T.]).

2. PRELIMINARY

2.1. Locally analytic representations. In this section, we recall some back-
ground on the theory of locally analytic representations of p-adic analytic groups.

We fix a locally Qp-analytic group H and denote the algebra of locally Q,-
analytic distributions with coefficients in F on H by D(H, E), which is defined as
the strong dual of the locally convex E-vector space C**(H, E) consisting of locally
Q,-analytic functions on H (cf. Section 4 of [ST03]). We use the notation Rep]fL B
(resp. Repyy ) for the category of admissible locally Q,-analytic representations
of H (resp. admissible smooth representations of H) with coefficients in E. Tt
follows from Theorem 6.3 of [ST03|] that taking strong dual induces a fully faithful
contravariant functor from Replf}’ g to the abelian category Modp g, gy of abstract
modules over D(H, E). The E-vector space ExtiD(H)E)(Ml, M) is well-defined for
any two objects My, My € Modp (g, gy, and we define

Exctly (1T, TTy) = EX%(H,E) (1T, 117 )

for any two objects IIy, 15 € Replf}E where -/ is the notation for strong dual. We
also define the cohomology of an object M € Modp g, gy by

i def i
H'(H, M) = Extp g g (1, M)

where 1p is the trivial representation of H. If H; is a closed locally Q,-analytic
normal subgroup of H, then H/H, is also a locally Q,-analytic group. It follows
from the fact

D(H, E) QD(H, ,E) E= D(H/Hl,E)
(cf. Section 5.1 of [Brel7]) that H*(H;, M) admits a structure of D(H/Hy, E)-
module for each M € Modp(y, g). For each II € RepIIfLE, if there exists an object
H;(H.,1I) € Replf}/HhE such that

Hy(H,,1I) = H'(H,, 1),

we call H;(Hy,II) the Hi-homology of II. Note that H,(Hy,II), if exists, is well-
defined up to isomorphism due to Theorem 6.2 of [ST03]. Throughout this paper,
whenever we use the notation H,;(Hq,II) for certain normal subgroup H; C H
and certain II € Rep?LE, we implicitly mean that H;(Hq,II) exists as an object of

Replﬁ}/Hl’E. We fix a subgroup Z inside the center of H. Then the algebra D(Z, E),



DILOGARITHM AND HIGHER Z-INVARIANTS FOR GL3(Qj) 351

consisting of locally Q,-analytic distribution on Z with coefficients in E, is naturally
contained in the center of D(H, E). For each locally Q,-analytic E-character x of
Z, we define Modp (g £, as the abelian subcategory of Modp g, g) consisting of

all the objects on which D(Z, E) acts by x’'. We write ExtfvlodD(H oy (—, —) for the
usual Ext-groups inside the abelian category Modp g, ),y Then we define

Extly (111, TT2) = Bxth g gy (115, 1))

for any two objects II1,II5 € Rep}f‘LE such that IT}, II; € Modp (g, g),,- In partic-
ular, if Z is the center of H and acts on Il € Replﬁ_’E via the character x, then
II" € Modp (g, E),y» and we usually say that II admits a central character x.
Assume now that H is the set of Qp-points of a split reductive group over Q.
We fix a maximal torus and a Borel subgroup 7' C B C H and call a parabolic
subgroup P C H standard if it contains B. We write P C H for the opposite
parabolic subgroup with L = P N P the standard Levi subgroup of P. We also
write N (resp. N) for the unipotent radical of P (resp. of P), and use the notation
b, p, n... for the E-Lie algebras associated with H xq, F, Pxq,E, Nxq,F....
We consider the category O together with its subcategory Oslg for each parabolic
subgroup P C H (cf. Section 9.3 of [HumO8] or [OS15]). For each parabolic
subgroup P C H with Levi quotient L, we have the Orlik—Strauch functor

FH. (’)glg x Repy g — Rep}‘}ﬂ.
The nice properties of FH are summarized in the main theorem of [OST5].

2.2. Formal properties. In this section, we summarize some general formal prop-
erties of locally analytic representations of p-adic reductive groups. We fix a split
p-adic reductive group H throughout this section.

We consider a parabolic subgroup P C H with unipotent radical N and Levi
quotient L.

Lemma 2.1. We consider I1; € Replli?E and I, € ReplﬂE such that

(i) Hi(N, II;) € ReplﬁE exists for each k > 0;
(ii) the (FIN) condition in Section 6 of [ST05] holds for I15.

Then there exists a spectral sequence
Ext) . (Hy(N, T0,), II,) = Ext/; " (Hl, nd2 (HQ)“)

for each x € {@, x} where x is a locally analytic character of the center of H. In
particular, we have an isomorphism

Homy, . (Ho(N, TIy), TIy) = Homy., (Hl, nd# (Hz)a“>
and a long exact sequence
Ext} , (Ho(N, TIy), Tly) < Extl . (Hl, Ind? (Hz)a“)
— Homyp . (Hy(N, IIy), II) — Ext? , (Ho(N, IIy), 1I2)
for each x € {&, x}.

Proof. This follows directly from (44) and (45) of [Brel7] as well as our definition
of Ext’}{’*, Extg* and Hj, in Section 2] for each k > 0. O
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We fix a finite length locally analytic representation V' € Repﬂ{} g equipped with
an increasing filtration of subrepresentations {FilyV }o<k<m such that

Fily(V) = 0, Fil,,(V) = V and gry,,V % Fil, 1 V/FilyV # 0 for all 0 < k < m—1.
Note that the assumption above automatically implies that

LV)>m
where ¢(V) is the length of V.

Proposition 2.2. Assume that Vi is another object of Rep}f”LE and x is a locally
analytic character of the center of H.

(i) If Ext}{’x (Va, gri,V) =0 for each 1 < k < m, then we have
Exty . (Vi, V) =0.

(ii) If there exists 1 < ko < m such that EXt}LX (W1, gr,V) = 0 for each
1<k#ky<m and dimEExt}LX (Vl, grkOV) =1, then we have

dimpExty, (Vi, V) < 1

if moreover Ext%LX (Vi, gr,V) =0 foreachl <k < ko—1 and Hompg , (V1,
gr,V) =0 for each ko + 1 < k < m, then we have

dimgExty , (Vi,V) = 1.

Proof. For each 1 < k < m — 1, the short exact sequence FilyV — Filp 1V —
gry,1V induces a long exact sequence

Exty (Vi, FilyV) = Exty . (V1, File41V) = Bxty, (Vi, gri1V)
which implies
dimpBxty  (Vi, Fily1V) < dimgExty  (Vi, FilkV)+dimgExty  (Vi, gre, V).

Therefore we finish the proof of part (i) and the first claim of part (ii) by induction
on k and the fact that gr;V =Fil; V.

Now we prove the second claim of part (ii). The same method as in the proof of
part (i) shows that

(2.1) Exty (Vi, Filg—1V) = Ext};, (Vi, Filg,—1V) =0
and
(2.2) Exty , (Vi, V/Fily,V) = Hompy,, (V1, V/Filg, V) =0

The short exact sequence Filg,— 1V < Filg,V — gr, V induces the long exact
sequence

Extl,  (Vi, Filg,_1V) = Extl (Vi, Fily, V)
— Exty, (Vi, grg, V) = Bxty, (Vi, Filg,—1V)
which implies that
(2.3) dimpExty  (V1, Fily, V) =1
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by (21)). The short exact sequence Fil, V < V — V/Fil,V induces the long exact
sequence

Homp , (Vi, V/Fily, V) — Exty , (Vi, Filg,V)
— Exty, (Vi, V) = Exty  (Vi, V/Fil,, V)
which finishes the proof by combining (2:2) and (23] O

2.3. Some representations of GL2(Q,) and GL3(Q,). In this section, we are
going to recall the construction of some locally analytic representations of GL2(Q,)
and GL3(Q,).

We denote the lower-triangular Borel subgroup (resp. the diagonal maximal split
torus) of GLy/q, by Bz (resp. by 7T) and the unipotent radical of By by Ngr,.
We use the notation s for the non-trivial element in the Weyl group of GLs. We
fix a weight v € X (Tz) of GLg of the following form

v=(v1,1n) € Z*

which corresponds to an algebraic character of T5(Q))

5T27I_/ d:ef < (a) 2 ) H arUIbV2~

We denote the upper-triangular Borel subgroup of GLy by Bs. If v is dominant with
respect to By, namely if v; > vy, we use the notation Lgr,(v) (resp. Lar,(—v))
for the irreducible algebraic representation of GL2(Q,) with highest weight v (resp.
—v) with respect to the positive roots determined by By (resp. Bs). In particular,
Lar,(v) and Lgr, (—v) are the dual of each other. We use the shortened notation

e GL an
15 (xr) ' (nd g xr.)

for any locally analytic character xp, of T5(Q,) and set
. def GL 00\ -
ik o) (G ) @ Lon )

if x1, = 01, ®E X, is locally algebraic where x5 is a smooth character of T5(Qy,).
Then we define the locally analytic Steinberg representation (of weight v) as well
as the smooth Steinberg representation for GL2(Q,) as follows

St3" (1) & 1G5 (07,0 /T (v), St5° 2 iGl2 (1,) /1

where 15 (resp. 1p,) denotes the trivial representation of GL3(Q,) (resp. of

T2(Qp))-

We denote the lower-triangular Borel subgroup (resp. the diagonal maximal
split torus) of GL3z/q, by B (resp. by T') and the unipotent radical of B by N. We
write Diag(a, b, c) € T(Q,) for the diagonal matrix with diagonal entries given by
a,b,c € Q. We fix a weight A € X(T') of GL3 of the following form

A= (>\17 )‘Qa )‘3) € ZS7
which corresponds to an algebraic character of T(Q,,) defined by

d7.A(Diag(a, b, c)) L PMpraehs,
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We denote the center of GL3 by Z and notice that Z(Q,) = Q.. Hence the
restriction of d7  to Z(Q,) gives an algebraic character of Z(Q,) defined by

0z x(Diag(a, a,a)) def raiFAa s

‘We use the shortened notation
def

EXtiI‘I,)\(_7 _) = EXtZ‘I‘IﬁZ‘X (_7 _)
for each closed subgroup H C GL3(Q,) that contains Z(Q,). In particular, the
notation _
Extly o(— —)
means (higher) extensions with trivial character of Z(Q,). We denote the upper-
triangular Borel subgroup of GL3 by_E. If \ is dominant with respect to B, namely
if Ay > Ao > A3, we use the notation L(\) (resp. L(—M)) for the irreducible algebraic
representation of GL3(Q,) with highest weight A (resp. —A) with respect to the
positive roots determined by B (resp. B). In particular, L(A\) and L(—\) are dual

x % 0 * 0 0
of each other. We use the notation P; I O and Py I .
* k% * k%

for the two standard maximal parabolic subgroups of GL3 with unipotent radical
N7 and N, respectively, and the notation P; for the opposite parabolic subgroup
of P; for each i = 1,2. We set

L, PNF
and set s; for the simple reflection in the Weyl group of L; for each i = 1,2. In
particular, the Weyl group

WGL3 = {1,81,32,8182,82817818231}

of GL3 can be lifted to a subgroup of GL3. Each element w € Wy, acts on X (7))
via the dot action
w- A w+(2,1,0)) — (2,1,0).

We will usually use the shortened notation /V; for the set of Q,-points of IN; if this
does not cause any ambiguity. We use the notation M (—\) for the Verma module in
Of), with highest weight —\ (with respect to B) and simple quotient L(—\) for each
A € X(T) (not necessarily dominant). Similarly, we use the notation M;(—A\) for
the parabolic Verma module in ngg with highest weight —\ with respect to B (cf.

Section 9.4 of [Hum08]). We define L;()) as the irreducible algebraic representation
of L;(Qp) with a highest weight A dominant with respect to BN L;. For example,
if A € X(T)4, then we know that A, s; - A and s;s3—; - A are dominant with respect
to BN Ls_; for each i = 1,2. We use the following notation for various parabolic
inductions

def GL3(Qp) . \*" def GL3(Q, an
IS5 (x) < (IndB(é(p) )X) ) IELS(m) = (Indpi(gp) )m)

if x is an arbitrary locally analytic character of T'(Q,) and m; is an arbitrary locally
analytic representation of L;(Q,) for each i = 1,2. Moreover, we use the notation

oo _ o i
iGLa (y) &f (Indg%ép?”)xw) ©p L), G5 (r,) & (Indgjggf”w;o) 25 L(\)

for each ¢ = 1,2 if x = dp A Qp x> and m; = Li(\) @ 7 are locally algebraic
where x> (resp. 7¢°) is a smooth representation of T'(Q,) (resp. of L;(Q,)). We
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will also use similar notation for parabolic induction to Levi subgroups such as
1 é’ﬂ 1, and zé’ﬂ 1, for each i = 1,2. Then we define the locally analytic (generalized)
Steinberg representation (of weight \) as well as the smooth (generalized) Steinberg
representation for GL3(Q,) by

S5°(N) = 15 (0r0)/ (157 (L) + 15 (L (1)
St3° 2 i (1)/ (i1 (1) + 151 (10.)

and
OB () E IR L) /TN, oF iR (1) /13
where 13 (resp. 1p,, resp. 1lp) is the trivial representation of GL3(Q,) (resp. of

L;(Qp) for each i = 1,2, resp. of T(Q,)). We write 1 for the trivial representation
of Q, and define the following irreducible smooth representations of L1(Q,):

e = St @p 1

def _
y E i (el e
% = (St ®p (|-t odety)) ®@p |- 2

and the following smooth representations of L2(Qp):

def

T = 1®p St5°
def _

Ton = [Tt epige (- ®p )
ef _

155 X208 (S @5 (|- | o dety))

Consequently, we can define the following locally analytic representations for each
1=1,2:

(2.4) Ol € FSE (L(=si M), 11,.,)

Si53_i, >
CSQi53,i,1 def ]-‘S;f (L(—si53_i - A), 773‘?31»,1)
Cors EF5® (L(=si - \), 752,,)
Coiss_i.si & fgi‘i (L(_5i53—i “A), 7"3?31,2)
Clovsy D TR (L(=si-0), 95
Ci 5:83— = ‘7:1(3};4_31: (L(_Sl " A), T3, 3)
Clisy s DTG (L=siss—i-0), 05,
C2ay sy s = Fars (L(—siss—i - A), 75°,3)
where
[ =" odet, ®p | - | and % L2 @p | - | o dety.

We also define
(25) 0815251, dCf ]:GLS( ( 515251 )‘)7 X?)
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for each w € Wgr, where

oodefl

X1 T

X?fdzef|'|_1®E|'|®E1

xgEies|- e
X E 11720k @k ||
X Sl @s ] e
X = |2 @p 18]

The simple objects in the category (’)alg can be described explicitly for each par-
abolic subgroup P C GLs, and the representations considered in (24]) and (2.3)
are all irreducible objects inside Reng“Qp% p according to the main theorem of
[OS15]. We define Q as the set that consists of Cj,s,s, w for each w € Wgy,, as
well as the following elements:

Z(A) L\ ®@pvy L) @pvy L) ©p St

1 1 2
Cs, Cgl 1 Cs,a Cs,a
01 C? C! C?
(2 6) 3132, s182,1 $281,1 8231,
. 2 1
Sl 5182 51,5182 82,8281 52 8281
1 2 1 2
5182,5182 5182,5152 5281,5281 5281,5281
51,81 8182,81 052,32 05251,32

Remark 2.3. The sets of Jordan—Hoélder factors of various smooth parabolic induc-
tions of x5 and (parabolic) Verma modules of GL3 are well known (cf. (48),(53) of
[Brel7] and Section 9.5 of [HumO08] respectively). Then it follows quickly from the
main theorem of [OS15] that

Q= |J JHora, (ISL‘*(XEZ"))-
wEWGL3

Lemma 2.4. The representation vy () fits into a non-split extension

(2.7) L) ®@p vy = v (A) - Ch,_ 4

$3—1i>

for each i = 1,2. On the other hand, the representation St3"(\) has the following
form:

CS21 1 0;281, C'52251 1
(28) f()\) RE St3 >< _ Cs1s251,1 .
Csz 1 081182, - C(52152;1

Proof. The first claim follows directly from (3.62) of [BD20]. It follows from the
main theorem of [OScl4] that

JHar,(q,) (St5"(N)
= {f()‘) QF Stgov 021 15 022 15 01251 15 01152 15 052251, 052152,17 0518281,1}

and each Jordan—Holder factor occurs with multiplicity one. According to the
fourth paragraph of the list before Corollaire 5.2.1 of [Brel7|, we observe that

Hy (Nu ]:GLB ( (—s3-48i - A), iléinLi(lT))) =L;(—s3-i8; \) ®@f iléiﬁLi(lT)
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which together with
(29) JHGL:}(QP) (‘/_'.1(:';’,;L3 (L(_S3*isi : )‘)’ ZglﬂL,(]'T)>) = {Cs;; i8i,10 53 iS4, 1}
implies that fgL"s (L(—s;»,,isi ), igﬁLi(lT» fits into a non-split extension

(2.10) Cl o1 Fpe (L(_S?)fisi “A)s g, (1 )) - C2

53—i8i, S3-iSi,1

for each ¢ = 1, 2. Here ([2.9)) follows from the exactness of ]-'1();’7'/LB and the irreducibility

criterion in [OST5], as well as the fact that i5i 1, (I7) has length two with Jordan—
Holder factors {17,, 779}. According to Corollaire 5.3.2 as well as the list before
Corollaire 5.2.1 of [Brel7|, we observe that

H, (Ng i ]-"GL3( i(—s3—i - A), Wf’i)) % Hy(Ns_;, 0523 \)@Hy(N3—;, C2 isi1)

which together with

(211) JHGLs(Q ) (]:ICD;L3( ( 53—1i A)a )) { s3_4,1 83 i8S, 1}
implies that .7-'GvL3 (Mi(—83,i A, wi"i) fits into a non-split extension
(2.12) 02 1< fng (Mi(—Sg_i . )\), 7T201) —»

2
83—, 83-i8i,1

for each i = 1,2. Here (ZI1) follows from the exactness of fgiL3 and the irre-
ducibility criterion in [OS15], as well as the fact that M;(—s3—; - A\) has length
two with Jordan—Holder factors {L;(—ss—; - \), L;(—s3_;s; - A\)}. We observe that
both fng (L(—s;),_isi - A), z'LBihLi(lT)) and fgLS (Mi(—s;;_i - A), Wﬁ) are sub-
quotients of 5% (dr.5) = Fg&* (M(=)), 17) (cf. [OSI5]), and hence subquotients
of St3"(\) as well (using the fact that F5"* (M(—)), 17) is multiplicity free, which
is a consequence of the main theorem of [OS15]). We finish the proof by combining
@I0) and @2I2) with the results before Remark 3.38 of [BD20]. O

Remark 2.5. One can show that all the possibly non-split extensions indicated in
([238) are non-split. We decide not to go further here as Lemma[24lis precise enough
for our application.

2.4. p-adic logarithm and dilogarithm. In this section, we recall the p-adic
logarithm and dilogarithm function as well as their representation theoretical in-
terpretations.

Let logy: Q, — Q, be the branch of p-adic logarithm function which is given
by the power series

logy(1 + 2) Zk;

on the open subgroup 1+pZ, C Z,' and satisfies the condition log,(p) = logy(¢) = 0
for each root of unity ¢. Let val,: Q) — Z be the p-adic valuation function defined
by |- | = p~v@%() (hence val,(p) = 1). We notice that

{log,, val,}

forms a basis of the two dimensional E-vector space

Homcont (Q;v E) .
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We define log o, & logy — Zval, for each £ € E and consider the following two
dimensional locally analytic representation of Q.

Ve: Q) — Ba(E), a— ( é log;if(a) )

We have

(2.13) S0Cqx (V) = €OS0C g (Vg)=1

where 1 is the trivial character of Q.. We notice that
Ext(lgpx (1,1) = Homeons (Q), E),

by a standard fact in (continuous) group cohomology and therefore the set {V |
% € E} exhausts (up to isomorphism) all different two dimensional locally analytic
non-smooth E-representations of Q) satisfying (2.I3). We abuse the notation Vg
for the representation of 75(Q,) = Q,’ x Q, given by composing with the map

(2.14) T(Q,) = Q, ( 0 g ) = alb.
As a result, we can consider the parabolic induction
Igzm (Ve ®E 01,.)
which fits into an exact sequence (by exactness of Ing)
(2.15) 1552 (07,0) = 1572 (Ve ®p 01,0) — I5-* (01,.0).

Then we define Y, (v, %) as the subrepresentation of Igsz (Ve @r omy.)/

Lar, (v) with cosocle Lar,(v). It follows from (the proof of) Theorem 3.14 of
[BD20] that Xgr,, (v, -Z) has the form

(2.16) St3"(v) — Law, (v)

and the set {E¢r, (v, .Z) | £ € E} exhausts (up to isomorphism) all different locally
analytic E-representations of GL2(Q)) of the form (2.I6]) that do not contain

Ler, (v) ©F St3° — Lar, (v)
as a subrepresentation. We have the embeddings
Li: GLy — L;

for each i = 1,2 by identifying GLo with a Levi block of L;, which induce the
embeddings
lri- T2 T

by restricting ¢; to T € GLg. We use the notation ¢ ;(Vg) for the locally
analytic representation of T(Q,) = (Q;)3 which is Vg after restricting to Tp
via tr; and is trivial after restricting to the other copy of Q. By a direct
analogue of ¥qr, (v,.Z), we can construct X, (\,.%) as the subrepresentation of
Ié”mLi (v1,i(Vig) @p 67,0) /Li(\) with cosocle L;(X). In fact, if we have M|z, ..., = v,
then we obviously know that X1, (X, Z)|cLy.; = ZaL, (v, Z) where the notation
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()|« means the restriction of - to * via the embedding x. We observe that the
parabolic induction IIC%LS (21, (N, 2)) fits into the exact sequence

[vB (N —St5"(\) | = Ip" (S,(\, £) — [T(A) — vE (M) |-
According to Proposition 5.6 of [Schril], we know that
Extgr,q,)a (LY, S5 (V) =0

and thus we can define X, (), %) as the unique quotient of Igih (21, (N Z)) that
fits into the exact sequence

St3"(A) = Bi(\, Z) = vp (A).

We use the same notation b; 1og, and b; va1, for the image of log, and val, respectively
under the embedding

(2.17) Extg; (1, 1) = Extyq,)o (1r, 1)

induced by the maps

7(Q,) — T5(Q,) 2

where the first map comes from the projection L; = GLg by restriction to 7. Hence
the set

(218) {bl,logoa bl,valpa b2,10g07 bQ,Valp}

forms a basis of Ext}(Qp)’o (17, 17). Recall the elements

Ci,logs Ci,val € EXt%(Qp)70(1T7 1T)

constructed after (5.24) of [Schrll] and observe that

Cllog = bl,log + 2bQ,log y  Clyval = bl,val, + 2b2,val
(2 19) 0 0 P P
C2log = 2b11og, + D2log,s  C2.val = 201 val, + b2 val,

According to (5.70) and (5.71) of [Schrll], we notice that there exists canonical
surjections

(2.20) EthT(Qp),O (17, 17) = EXt%}Lg(Qp),/\ (VB (N), St5"(N))

with kernel spanned by {¢; 1og, Civai}. For each ¢ = 1,2, the previous constructions
of ¥;(A\, %) can be explained by the composition
(2.21)

Homont (Q;>7<7 E)

= EXt}Q; (1, 1) = EthT(Qp),o (17, 17) — EXt%}L3(Qp),)\ (vB1(A), St5"(N))

with the second and third morphism given by ([2I7) and (Z20]) respectively. We
deduce from ([ZI9) and the explicit description of (ZI7) and (220) that the com-
position (21 is actually an isomorphism. We abuse the notation b; g, and b; var,
for the image of log, and val, under the composition ([2.21]), and then notice that
the image of c3_; 105 and c3_; a1 under ([2.20)) is given by —3b;10g, and —3b; val,
respectively.
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We define 3(\, .41, %) as the amalgamate sum of ¥1 (A, %) and Xa(A, 2%) over
St3"(N), for each 4, % € E. Consequently, 3(X, 27, %) has the following form

v ()
(2.22) St5"(A)
T
In fact, if
(2.23) LH=-L"L=-L€E,

we can identify our (), .4, . %) with the ¥(\, ., %) in Definition 5.12 of [Schr11],
defined using the element

(02,log + 3/62,va1a C1log + zclwal) € EXt%}LS(Qp),)\ (’U??Ill(/\) 2 ’U?’Izl(/\)a St;n(/\)) .

Remark 2.6. In fact, one can identify %, and %, with Fontaine-Mazur .Z-invariants
of the corresponding Galois representation via local-global compatibility, according
to Remark 3.1 of [Ding19]. This is the reason for the appearance of a sign in (2:23)).

We have the following canonical morphism by (5.26) of [Schrii]

(2.24) ki BxtTq) o(1r, 17) = Extgr, q,)a (L), St3" (V).
Note that we also have
(2.25) ExtZq,)0(lr, 17) 2 A2 (ExtlT(QP)’O(lT, 1T))

by (5.24) of [Schrll]. The set

(226) {bl,valp A b2,va1pa bl,logo A b2,va1p 3 bl,valp A b2,10g07 bl,logo A b2,10g0a bl,valp
A bl,logov b2,va1p A b2,10g0}

forms a basis of A2 <Ext1T(Qp))0(1T, 1T)) (cf. 2I8)) and we abuse the same nota-
tion (2.26]) for the corresponding basis of ExtzT(Qp)70 (17, 17) (cf. @228). It follows
from (5.27) of [Schrll] and (2I9) that the set

{K(bl,valp A b2,va1p)u fi(bl,logo A b2,va1p)7 H(bl,valp A b2,log0)7 K/(bl,logo A bQ,IOgO)}

forms a basis of the image of ([2:24)).
Let liz: Qp\{0,1} — Q, be the p-adic dilogarithm function defined by Coleman
in and we consider the function

def

. 1
Dy(z) = lia(z) + 510g$(2)log$(1 —z)
as in (5.34) of [Schrll]. We also define

def

d(z) = logy(1 — z)val,(z) — logy(z)val,(1 — 2)
as in (5.36) of [Schr1l] and it is clear that

Z
Dy — Dy = Ed'

It follows from Theorem 7.2 of [Schr1l] that {Dy,d} can be interpreted as a basis
of

EXtéLQ(Qp),O (1, St3")
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which naturally embeds into ExtéLQ(QP) (1, St§") (cf. (5.37) and (5.38) of [Schr1l]).
Then the map ¢;: GLg — L; induces the isomorphisms (cf. (5.42) of [Schrll])
(2.27)

ExtZy,(q,) (12, St3") <= Ext? (g0 (12, St < ExtZy, (q,)0 (13, IgLS(Stgﬂ))

where L;(Q,) acts on St5" via the projection L;(Q,) — GL2(Q,). We consider the
following morphisms
(2.28)

ExtZ1,(q,) (12, St") =5 Extir, .0 (13, IgLS(Stgn)) — Extly, q, 0 (13, St3")

induced by the inverse of the composition (227)) as well as the surjection I gL?’ (St5™)
— St3". Finally there is a canonical isomorphism

Extgr,(q,).0 (13, St5") & Extgr, q,y (L(A), St5*(V)
by (5.20) of [Schr1i].
Lemma 2.7. We have

dimpExtg, q,)a (L(A), St5*(A)) = 5.

Proof. This follows directly from Proposition 5.6 of [Schrli]. |
Lemma 2.8. There exists a € E* such that

11(d) = 12(d) = =3a (K(b1,10g, A b2,val, + b1val, A b2log, ) -
Proof. This follows directly from Lemma 5.8 of [Schril] and (ZI3). O

Remark 2.9. Tt follows from the proof of Lemma 5.9 of [Schr1l] that ¢1(Dg)—t2(Do)
is a linear combination of

{H(blwalp A b2,va1p)7 K(bl,logo A b2,va1p)a H(vaalp A b2,log0)7 H(bl,logo A b2,10g0)}a
but & priori we do not know the coefficients of this linear combination.

We recall from (5.55) of [Schrll] that

(2.29) co L a1ty (Dy) — %H(Cl,log A €2.10g)
where « is defined in Lemma 5.8 of [Schr1l].
Lemma 2.10. The set

{K (b1 va1, A b2 va, ), K(b110g A D2val,)s £(D1,val, A b2.10g, ), K(b110g, A b2,log, )s Co}
forms a basis of ExtéLa(Qp)’)\ (L(N), St5*(N)).
Proof. This follows directly from (5.57) of [Schrll] and (ZI9). O
Lemma 2.11. We have

dimpExtgr, ) (EV), S\, 2, %)) =1

and
dimpExtér, g (L), T\, £, %)) = 2.
Moreover, the image of
{Kf(bl,valp A b2,va1p)u CO}
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under
Extgr, ) (LY, St5%(N) = Extgr, q,)a (L), S\, 21, %))
forms a basis of EXtéLs(Qp)«\ (L), T\, 4, 2)).
Proof. This follows directly from Corollary 5.17 of [Schr1l] and (ZI9]). O

3. A KEY RESULT FOR GL2(Q))

The goal of this section is to prove Proposition 3.5 which is a key technical
result that excludes the existence of a locally analytic representation of GL2(Q,)
with a specific form. Note that Proposition will be crucially used in Section
and Section [6] (most notably in Proposition [5.4] and Proposition [6.2)). We usually
identify GL2(Qp) with a Levi factor of a maximal parabolic of GL3 when we apply
the results from this section.

We use the following shortened notation

I(v) = 15,2 0n,0), 10) = 15,2 0n0 @5 (117 €1 1))
for each weight v € X (T3).
Lemma 3.1. We have
dimEExtéLQ(Qp) (f(s V), gL, (v, f)) =1.

Proof. This is essentially part of the proof of Theorem 3.14 of [BD20]. In fact, we
know that

Exti,q, (105 v), L, (v) @p St — I(s - v)

Extgr,q,) (1(5 v), Law,(v) ©p St — I(s-v)

(I
o o

and
dlmEEthGLz(Qp)(I(S : V)a zGLz (V)) =1

which finish the proof by a simple dévissage induced by the short exact sequence

(IGLz(V) RE St;o — I(S . I/) ) — EGL2(V,$) — ZGLQ(V).

For each split p-adic reductive group H, we have a natural embedding

where D(H, E) 1y is the closed subalgebra of D(H, E) consisting of distributions
supported at the identity element (cf. [Koh07]). The embedding above induces
another embedding

(3.1) Z(U(h)) = Z(D(H, E))

by the main result of [Koh07] where Z(-) is the notation for the center of an E-
algebra. We say that II € RepELQ(Qp)ﬁ g has an infinitesimal character if Z(U (b))
acts on II' via a character.
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Lemma 3.2. IfV;,V; € Rep]fLE have both the same central character and the same
infinitesimal character and satisfy

Homy (Va, Vi) =0,

then any non-split extension of the form Vi — Vy has both the same central char-
acter and the same infinitesimal character as the one for Vi and V.

Proof. This is a direct analogue of Lemma 3.1 in [BD20] and follows essentially
from the fact that both D(Z(H), E) and Z(U(h)) are subalgebras of Z(D(H, E))
by [Koh07]. O

We fix a Borel subgroup By C H as well as its opposite Borel subgroup By. We
consider the split maximal torus Ty “'p N By and use the notation Ng (resp.
Np) for the unipotent radical of By (resp. of By). We use the notation Jz—()
for Emertion’s Jacquet functor (cf. [Eme06]).

Lemma 3.3. IfV € Replf}’E has an infinitesimal character, then U(ty)V# (as a
subalgebra of U(ty)) acts on Jg(V) via a character where Wy is the Weyl group
of H.

Proof. We know by our assumption that Z(U(h)) acts on V' (and hence on V as
well) via a character. We note from (B.1]) that Z (U (h)) commutes with D(Ng, E) C
D(H,E) and thus the action of Z(U(h)) on V commutes with that of Ny, which
implies that Z(U(h)) acts on VV#~ via a character for each open compact subgroup
N—HO C Np. We write
0: Z(U(H)) = Ulty) s

for the Harish-Chandra isomorphism (cf. Section 1.7 of [Hum08]) and j; and ja for
the embeddings

J1: Z(U(h)) = U(h) and jo: U(ty) — U(h).

We choose an arbitrary Verma module My (Agy) with highest weight Ay, namely

we have
def

Mpu(X) = U(h) ®p iy Al-
We use the notation My (Ag), for the subspace of My (A) with ty-weight p and
note that
dimEMH(/\H),\H =1.

We easily observe that
(32) Z(U()) - Ma(Ar)ry = Ma(Au)ay, and U(ty) - Ma(Ag)r, = Ma(Am)ay,-

It is well-known that the direct sum decomposition

(3.3) h=ng Dty g
induces a tensor decomposition of E-vector space
(3.4) U(h) =U(ng) @p Ulty) @ Umg).

Hence we can write each element in U(h) as a polynomial with variables indexed by
a standard basis of h that is compatible with (3.3]). It follows from the definition of
6 as the restriction to Z(U(h)) of the projection U(h) — U(ty) (coming from (B4)))
that

J1(2) = j200(z) € U(h) -1 +ng - U(h)
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for each z € Z(U(h)). If a monomial f # 0 in the decomposition [B4) of ji(z) —
J2 0 8(z) belongs to
ng - Ulng) - Ulty),
then we have
0# f - Mu(Ag)rg CSng - Ma(Ag)r, C @ My(Ne ),
HANH
which contradicts ([B.2]). Hence we conclude that
J1(2) =jz08(2) € U(h) - ngr

and in particular

J1(2) = ja 0 0(2)
on VNu" for each z € Z(U(h)). Hence we deduce that U(ty)"# acts on Ve

via a character. We note by the definition of Jg— (cf. [Eme06]) that we have a
T;I"—equivariant embedding

(3.5) Jg-(V) < Vi

where TI;,Ir is a certain submonoid of Ty containing an open compact subgroup. As
a result, (38) is also U(ty)-equivariant and thus U(ty)"" acts on J5—~(V) via a
character which finishes the proof. O

We take H = GL2(Q,), By = B and By = Bs in the rest of this section. The
idea of the following lemma which is closely related to Lemma 3.20 of [BD20], owes
very much to Y.Ding.

Lemma 3.4. A locally analytic representation of either the form

(386)  Taw () ®p St — (s v) — T, () — Tar, (v) 5 St
or the form
(3.7) Law, (v) — I(s - v) — LaL,(v) ®p St5° — LaL, (v)

does not have an infinitesimal character.

Proof. Assume that a representation V of the form (B.6]) has an infinitesimal char-
acter. Note that V' can be represented by an element in the space

Extgr,(q,) (Lo, (v) ©p St5°, Sar, (v, £))

for certain . € E. We consider the upper-triangular Borel subgroup By and the
diagonal split torus T5. Then by the proof of Lemma 3.20 of [BD20] we know that
the Jacquet functor Jz; (cf. [Eme06] for the definition) induces a injection

(38) EXté}Lg(Qp) (ZGLQ (V) ®E Stgo, EGLQ (l/, g))

= Extr,q,) 0n @6 (|- 196 -7, 60,0 @6 (- |®]|- 7).

We deduce by twisting d7, —, ®g (|- |7 ®g | - |) that we have an isomorphism

(3.9)

Bxtr,(q,) (0.0 @5 (|- 1®6 |- 171, 0nw @6 (|| @5 |- |7") 2Extr,q,) (17, 17,)-
It follows from Lemma 3.20 of [BD20] (up to changes on notation) that the im-
age of the composition of [B3) and (B8] is a certain three dimensional subspace
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Extsz(Qp)(lTQ, 17,)e of ExtlTQ(Qp) (17,,17,) depending on .. More precisely, if we
use the notation €y, €5 for the two characters

e Ta(Q,) = QF, ( g S)HaandEQ:Tg(QP)%Q;, ( g 2)»—>b,

then the set

{logg o €1, val, o €1,log o €3, val, o €2}
forms a basis of Ext1T2(Qp)(1T2, 17,), and the subspace Extsz(Qp)(lTQ, 171,)« has
{logy o €1 +1og o €2, val, 0 €1 4 val, 0 €2, log, 0 €1 —logy 0 €2 + L (val, o €7 — val, 0 €2)}

as a basis. It follows from Lemma B3 that U(tz)"er2 acts on Jy (V) via a
character where Wqy,, is the Weyl group of GLa. Note that the subspace of
Ext1T2(Qp)(1T2, 17,) corresponding to J5(V) (by twisting o, @5 (|-| ' @g|-])) is
killed by U(tz)"Wct2. We observe that the subspace M of Extsz(Qp)(sz, Lr,) killed
by U(ty)"er: is two dimensional with basis

{valy, o €1, val, 0 €2}
and we have
MN Extsz(Qp)(sz, 1n,) e = E(val, o€ + valy o ea) .

However, the representation associated with the line E(val, o €; 4 val, o €3) has a
subrepresentation of the form

ZGLQ (l/) RE Stgo e ZGL2 (l/) RE Stgo

which contradicts the fact that V' has the form @3.6)).
The proof of the second statement is a direct analogue as we observe that JB;
also induces the following embedding

EXtéL2(Qp) (ZGLz (V)a fGL2 (V) T(S ’ V) T ZGL2 (V) ®8 Stgo o ZGLQ (V) )
— EXt%“z(Qp) (5T2,ua 6T2,V) :

O

We define ¥ (v,.%) as the unique (up to isomorphism) non-split extension of

Yo, (v, L) by I(s-v) given by Lemma [3.1]
Proposition 3.5. We have
EXtéLz(Qp) ( ZGLQ (V) RE Stgo - ZGLQ (I/) B Z;_(V7 ,,5,”)) =0.

Proof. Assume on the contrary that V' is a representation given by a certain non-
zero element inside

Exthia,) ( Zora(r) @6 $t5° — Lar, (v) » TE(1,.2)).

We deduce that V' has both a central character and an infinitesimal character from
Lemma and the fact

Homgy(q,) ( Tar. (v) @5 868 — Tara(v) . 55 (1.2)) =0,
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As we have

ExtéLQ(Qp)(fGLQ(V) ®p Sts°, I(s-v)) = ExtéLQ(Qp)(fGLQ(V), I(s-v)) =0,

dimEEXt%;Lz(Qp) (ZGLz (I/), ZGLQ (V) RE St;o) =1
and
dimEExtéLz(Qp) (Lan,(v), I(s-v)) =1

by a combination of Lemma 3.13 of [BD20] with Lemma [2.1] we deduce that V has
a subrepresentation of one of the three following forms

(l) IGLz (V) XRE Stgo — Z(;,L2 (l/) XRE Stgo ;
(i) Lar,(v)®p Sty® — I(s-v) — Lar, (v) — Lar, (v) ®p St ;
(i) Tar,(v) @p St5 — (s v) — Lar,(v) — (s v) B
LGL2 (V) RE Stgo — LGL2 (V)

In the first case, we know from Proposition 4.7 of [Schrll] and the main result of
[O105] that

Extgr,(q,). (Lew, (V) ®5 St5°, Law, (v) ©@p St5°) =0

and therefore this case is impossible due to the existence of central character for
V' (and hence for its subrepresentations). In the second case, we deduce from
Lemma [B.4] a contradiction as V' has an infinitesimal character. In the third case,
we thus know that V' has a quotient representation of the form

LoL,(v) — I(s - v) — Law, (v) @6 St3° — Law, (v)

which can not have an infinitesimal character due to Lemma [3.4], a contradiction
again. Hence we finish the proof. O

Remark 3.6. Note that the argument in Proposition actually implies that
Bxtbrq,) ( Zow, () @ 815 — Lo, ()
I(s - v) — Lar,(v) — I(s-v) ) =0
and we can show by the same method that
Exthraay) ( Zov.(v) — Low, (v) 05 S5,

I(s-v) — L, (v) ©p St — I(s - v) ) ~0.

4. COMPUTATIONS OF Ext I

In this section, we are going to compute a list of Ext-groups based on known
results on group cohomology in Théoréme 4.10 of [Schril] and Section 5.2, 5.3 of
[Brel7]. The technical results proved in this section will be frequently used in more
complicated computation in Section B and Section[fl In each proposition or lemma
below, we present a list of Ext-groups whose computations are parallel to each
other.
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Proposition 4.1. The following E-vector spaces are one dimensional

for each i = 1,2. Moreover, for all the other choices of Vi,Va € {L()\),

Extér, (g, (L), I @ oF)
Extgr, g,y (DY) @603, (V)
Extgp, (Qp)A (L) ®p St5°, L(A) @5 vp)
EXtGL Q). (L\) ®@p vy, LA ®p St3°)
EXtéL3( Q). (f(/\) ®p St3°, f()\))
Extdr, ) (L), LA @5 St3°)
Extéir,y (g, (L) @5 0%, L(N) @5 vE)
Extdr, ) (L) @pvE, L) @ vF)

vy, L(\) ®@p 03, L(A\) @p St3°}, we have

for each k=1,2.

Ext¢r, g, (Vi Vo) =0

367

L)) ®g

Proof. This follows from a special case of Proposition 4.7 of [Schrll] and the main

result of [Or05].

Lemma 4.2. We have

EXtéLg(Qp),)\ L)) ©g vy — L(A), L()\) ®p St3° ) =0
L)) ©p vF — L(\) ®5 St _(A)) —0
Ext(ip, g, ( TV — L) ®p v, L(A) ©p v}’a‘;_i) =0

k
Extar,Q,).a

foreachi=1,2 and k=1,2.

Proof. Tt is sufficient to prove that

(4.1) Exthry g ( T @5 o — I(\) , L) @5 StF) =0
and
(4.2) Exthry g ( TO) @5 0 — I() , L) @5 StF) =0

as the other cases are similar.

existence of a representation of the form

IO\ ®p St — L(\) @p v — L(A)

which is again equivalent to the vanishing
(4.3) Exthiy g (D), I @ St — L) @p v ) =0,
using the fact (cf. Proposition 1)

Extir, g, (L), ZO) ®p St°) = 0.

The short exact sequence

(Z) @rstx — I @pof ) = FE (Mi(-N), 775) - C°

83—i,83—iSi

We observe that (@I is equivalent to the non-
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induces an injection
Exthryiqa (D), I @5 St5° — L) @5 v )

< Extdr, ) (f()\), FSFs (Mi(=N), wgg)) .

Therefore ([@3]) follows from Lemma 2] and the fact (using Théoréme 4.10 of
[Schr1l] and a comparison of Z(L;(Q,))-action)

Extr, ) (Ho(Ni, L(A)), Li(\) @ 7%
= Homy,(q,)x (Hi1(Ni, L(N)), Li(\) ®p m7%) = 0.
On the other hand, the short exact sequence
I\ ®p v < ( I\ @ 0% — L(\) ) 50N
induces a long exact sequence
Bxthy g (EO), T @5 St5)

< Exthr, Q) ( L) ®g vE — I\, L\ @p St§°)
= Extgr, g, (L) @5 vF, LA) @p St3°) = Extd, ) (L), LA) @5 St3°)

— Ext3y, quyn ( () ®p v — I, L) @5 St§°)

— Extgr, @,y (L) @503, LA @5 St5°)

and thus we can deduce [@2) from Proposition 1] and @.T]). O

According to Proposition ] we may define Wy as the unique (up to isomor-
phism) locally algebraic representation of length three satisfying

socary(Q,)(Wo) = L(A) @p (vp, ® ) and cosocgr,(q,)(Wo) = L(A).

We also define the unique (up to isomorphism) locally algebraic representation of
the form

(4.4) Wi = L) @p vy — L(\)
for each 1 = 1,2
Lemma 4.3. We have
dlmEExtGLg( Q)N (Wo, L\ ®g Stgo) =1

and _
EXtéLg(Qp),)\ (WO, L(A) ®E Stgo) = O

Proof. The short exact sequence
f()\) RE 7)(1);1) — Wy —» Wy

induces a long exact sequence

EXtéLg(Qp),)\ (Z()\) ®E ’U10:><1>, Z()\) ®E Stgo) — EXtéLg(Qp),)\ (WO, Z()\) ®E Stgo)
— Extar, g, (Wa, L) @5 St5°) = Extgr, ) (L) ©@p 03, L(A) @5 St3°)
— Extgr, g,y (Wo, L) @5 St5°) = Extgr, q,) (Wa, LX) @5 St3°)

which finishes the proof by Proposition 1] (£1]) and (£2). O
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Recall that we have introduced a set €2 consisting of irreducible locally analytic
representations of GL3(Q,) in (Z0]). We define the following subsets of €:

Q1 (L(N)) e {L(\) ®p vp L)) ®p vE, Cf 1 Coynd

0 (LN ©pvy) < {LN), L) @eStT, C2 1, Cuyw, C o4}
O (Z()‘) ®F UPQ) def {f()\)7 ( ) ®p St3°, sz 1> Csis1s 032,5251}
% (L) @pst) © {LN) @pvg, L) @, CF . CF st
Qs (L(N)) df  {L(\) ®p Stg°, 051 1 C, Gl Cha)
Qs (f(/\) RF vpl) def L\ ®p VR, 81 10 C2l g ans 03213271, (GF
Q2 (Z(/\) E ”PQ) e {L(\) @r Upl 52,1 0922 52817 03231 10 Csisapsn }
Qo (LA @p St5°) 4 {L(N), Cf 46,5 C§2 sas1r Coisasisyr Cosyisasy )

Lemma 4.4. For each
Vo € {f()\), f()\) RF Uj’;‘i, Z(A) RE v?_’,;, Z()\) ®p St3°},
we have

dlmEEXtGLg(Q A (‘/Q, V) =1 Zf Ve Ql(VO),
Extéry g (Vo, V) =0 if VeQ\ V).

Proof. We only prove the statements for V = L(\) as other cases are similar. If
V e{L(\), L(\) @p vy, L(\) @ vy, L(\) ®p St}
then the conclusion follows from Proposition £ If
V = Fp"(L(—s3-:5i - A), )

for a smooth irreducible representation 77° and ¢ = 1 or 2, then it follows from
Lemma 2.1] that

(4.5)
ExtlLi(QpM (Ho(N;, Z(N)), Li(s3—isi - \) @p 15°) < ExtéLs(Qp),/\ (L(N), V)
— Homy, q,)x (Hi(Niy, L(N)), Li(sz—isi- ) @ 7;°)
— ExtQLi(QP)7/\ (Ho(Ns, L(N)), Li(s3—isi - A) @p %) .
We combine (45 with Théoréme 4.10 of [Schri] and deduce that
(4.6) Extr,q,ya (Li(N), Li(ss—isi - A) @5 77°) = Extgr,q,a (LAY, V)
— Homyp, (g, (Li(ss—i - ), Li(ss—isi - \) @p 7°) .

We notice that Z(L;(Q,)) acts via different characters on L;()\), L;(s3—; - ) and
Li(s3_;si - A\) ®p m°, and thus we have the equalities

EXtii(Qp),)\_(fi(A% Zz(?,zsz - )\) ®E Wfo) = 0
HOII’lLi(Qp))\ (Li(837i . )\), Li(337i37l . )\) KRF 71';)0) = 0
which imply that

(47) EXtéL3(Qp)7 ( (A) ]:GLg( ( 83_7;57;-)\), 71.50)) =0
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for each 7{° and i = 1,2. If

V = Fp" (L(=s5-: - \), ™)

2

for a smooth irreducible representation 77° and ¢ = 1 or 2, then the short exact

sequence
FEl (L(—s3-i°\), m5°) <> Fpr(My(—s3—i- ), 75°) = Fp* (L(—s3-i8i- ), )

7 (3

induces a long exact sequence

Extiryq,a (E): V) < Extdr, q.)a (Z(A), FEIs (My(=s5-: - \), w;”))

= Extlir, q,)a (EO), FE(L(=ss-is:- ), 7))

7

which implies an isomorphism
(4.8)

Extgr, ) (LY, V) = Extgr, ) (Z()\), Fole (Mi(—s3—i - A), Wfo))
by @X). It follows from (AS]), Théoreme 4.10 of [Schrll] and Lemma [ZT] that

(4.9) Extr, g (Li(A), Li(ss—i- ) @pm°) = Ext};Ls(Qp), » (L), V)
— HomLi(Qp))\ (Ei(s;g,,i . )\), Zi(83,i . )\) RE ’iT;)o)
— ExtQLi(Qp)7/\ (fi(/\), Li(s3_i-\) ®p ﬂ'fo) .

As Z(Li(Q,)) acts via different characters on L;(\) and Li(s3—; - \) ®p 7°, we
have the equalities

Extii(Qp)’)\ (zZ(A), zi(S:),,iSi - )\) ®E Wfo) = 0
EXtQLi(Qp),/\ (LZ(A), Li(53_isi . /\) ®F Wfo) =0

which imply that
(4.10)
EthGL?)(Qp)))\ (L()\), V) l> HomLi(Qp)’)\ (Li(Sg_i . )\), Li(Sg_i . /\) ®E W;)o) .

Note that
Homy,(q,)x (Li(ss—i - A), Li(ss—i-A) @ 7°) =0
for each smooth irreducible 7° # 1;,. Hence we deduce that
dimpExtly g, (ZOV). FEW(L(-s5mi- V), 1)) =1
and
1 T GL3 o0 —
EXtGLg(Qp),)\ (L()\), fpz (L(_S3—i . )\)7 ™ )) =0

for each smooth irreducible 77° # 17,. Finally, similar methods together with
Théoreme 4.10 of [Schril] also show that

EXtGLy Q) (Z()\), Fire(L(—s1s981 - A), Xff)) =0
for each w € W. O

Lemma 4.5. For each

Vo € {L(\), L(\) ®p vy, L(A) @p v, L(A) @ St5°},
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we have

dlmEEXtGLg(Q A (‘/0, V) =1 Zf Ve QQ(VO),

Proof. We only prove the statements for Vy = L()\) as other cases are similar. If

V e{L(\), L(\) @p vy, L(\) @ vy, L(\) ®p St}

then the conclusion follows from Proposition Il We notice that Z(L;(Q,)) acts
via different characters on L;(\), Li(s3—; - A) and L;(s3_;s; - \) @g 75°, and thus
we have

(4.11) Ext7, q (Li(V), Li(ss—isi - A) ©p 77°) —0
Extr, . (Li(sa—i - A), Li(sa—isi - \) ®@p7°) =0
Ext? 3 (@ (Li(N), Li(s3—i8; - A) ®p m5°) —0

We also notice that

(4.12) Homy, Q) (Li(s3—isi - A), Li(s3—isi-A) @ 7°) =0

for each smooth irreducible 7$® # 1, and
(413) dimEHomLi(QP),,\ (Zi(S'g,,iSi . )\), Zi(3372’5i . )\)) =1.

We combine (11]), (12) and (I3) with LemmaZIland Théoréme 4.10 of [Schrll]
and deduce that

(4.14) Extar,(q,) (Z(A), FEVs (L( =534 - ), w;xv)) —0
for each smooth irreducible 7° # 1, and
(4.15)  dimpExtiy, q )a (f(/\), FGMs (L(—s5_5: - V), 1Li)) _1
which finishes the proof if

V = Fp (L(—s3_isi - A), ™).

Similarly, we have

(416) EXt%i(QP)’)\ (Zz()‘)a fi(si’)*i . )‘) QF 7.‘_?0) =0
HomLi(Qp)J\ (Zi($3,isi . >\), Zi(8371‘ . )\) ®F ,ﬂloo) =
Ext?. ) (Li(A), Li(ss—i-A) ®p 75°) =0

We claim that
(4.17) Bxt] gy (Li(ss—i - A), Li(ss—i - \) ®p m5°) = Bxt] q 1o (1r,, 7)™

for each 7° # 1;,, where the RHS means Ext! inside the abelian category
Repr,(q,),z- The reason behind ([@I7) is that any non-split extension in LHS
of ([@I7) necessarily has infinitesimal character (using Lemma [B.2), hence must
split after restricting to [;. In other words, any non-split extension in LHS of ({.17)
must have the form fi(s;g,i - A) ®g W where W is a smooth non-split extension
coming from RHS of ([@I7). Hence it is clear that

(418) Extii(Qp)J\ (Zi(sgﬂ‘ . )\), fi(SS—i . )\) ®F 7.‘_;)0) =0
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for each smooth irreducible 77 # 1., 779 and
(4.19) dimEExtlLi(Qp)ﬁA (Li(s3—i - A), Li(s3—i-\) @p moq) = L.

By adapting arguments in Section 4.2 (cf. (4.23) and Proposition 4.5) of [Schrll],
we claim that

dimEExtlLi(Qp)J\ (Zi(537i - ), Li(s3—i - )\)) =1,
Ext%i(Qp))\ (Zi(337i : )\)7 Zi(s3*i : A)) =0.

We combine ([10) and (£I8) with Lemma 2] and Théoreme 4.10 of [Schrll] and
deduce that

(4:21) Extér, i (EO), FEW (Mi(=s5-i - A), 75%)) =0

for each smooth irreducible 72 # 11, 77q. Similarly, we use (I9) and @20) to
conclude that

(4.22) dimEExtéLs(Qp)’,\( (A), FSU (My(—s5_4 - ), wgo)) 1

(4.20)

for 7p° =1g,, m79. The short exact sequence
fgLS(L(—S3_i'>\), ) .FGLS( ( S3_4 /\), W;)o) —»]:giL3(L(—S3_iSi')\), 7Tzoo)

induces a long exact sequence

EXtGLg(Q ),\( (A ]:GL3( (—s3-5i - A), W?))
= Bxtér, i, (D), FEP (L(=s3:- \), 7))
= Bxtép, g, (DO, FR*(Mi(=s5- - 2), 7))
= Bxtér, g, (O, FE(L(=s3-isi - N), 7))
= Bxtér, g, (D), FEP(L(=s3-i-N), 7).

The first term always vanishes thanks to Lemma 4l According to (£I4), the
fourth terms vanishes whenever 77° £ 1. If 70° # 1, ﬁ, then the third term
vanishes (cf. ([ZI)), and so does the second term. If 7° = 779, then the third
terms has dimension one, and so does the second term. If 79° = 1., we note that
the fifth term vanishes and both the third and fourth term have dimension one (cf.
(#20) and ([#.22)), and thus the second term vanishes. Consequently, we finish the
proof if

V = Fp (L(—s3-; - A), ).
Finally, similar methods together with Théoréme 4.10 of [Schr1l] also show that
EXtGLg(Q )A < (A), Fg"*(L(—s15251 - \), Xfuo)) =0
for each w € W. ]
We define
Q" = Q\{Z(), TN @p vy, L) @ v, L\) ®p St}
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Then we define the following subsets of Q~ for each i = 1, 2:

1 £ 1 2
Ql (C ) of {OSiSS—ial’ Cssfisnl’ S , 1 SL,1}
def C?
= { siS3_4,17 CSS—'LShSSfU Csl 1 ml}
def 2 1
5“5 S3_4 :C { 8i83-7,5i83—4" CSS 153,83 —i) Os“s 834" si,sng,,i}
def 2 1 1 2
SL,S S3—4 = CSi,S:s—iqSiS:s i? CSS i54,83-98;) qu 5§83 C'Sivsisii—i}
2
Ql( Si,Si dZEf {qu‘,53—7:,sm 033 i8i,10 C53 i85i,83_i54" 81‘,757:}
Lemma 4.6. For each
1 2 1 2 ;o
S, 10 si,1 5§,8i83—3 5§,8i83—3i SiySi - ’
Voe{Cl, C%, C , C Cos, |i=1,2)

we have

dlmEEXtGL (Qp),A (‘/0, V) =1 Zf Ve Ql(VO),
Extér, g (Voo V) =0 if Ve \ Q).

Proof. The proof is very similar to that of Lemma [£4] and the main difference is
that we need Corollaire 5.3.2 of [Brel7] instead of the list before Corollaire 5.2.1 of
[Breld). O

Lemma 4.7. We have

EXtéLS(Qp),A L(\) ®@p vy —L(\), CZ. ) =0
Extgr, oy ( L) ©5 08 — I(\) @5 St3° 5 CL sy ) -0
Extér, s ( TV — L) ©p v 05“1) —0
Exthiqua | L) @5 St — L) @p vy, C2 .., ) =

for each i =1,2.

Proof. We recall the shortened notation W; from ([€4) and note from (53) of [Brel7]
that W, = GL3 (0, _,) for each i = 1,2 (cf. Section 2.3 for the notation Z%L3 ()
and Dﬁ,i) We only prove the first vanishing (among four)

(423) EXtéLg(Qp),)\ (Wz; C§i7l) =0
as the other cases are similar. The embedding
Cfi,l — fgg,lj(M%i(_Si “A); 77??31‘,1)

induces an embedding (using a vanishing of Hom)
(4.24)

Extér,quya (Wis C2 1) < Extér, qu)a (W FEIs (My_y(=s; - \), W?‘f‘iiyl)).

We observe from (48) as well as the first paragraph of the list before Corollaire
5.2.1 of [Brel7] that

_ La_;
HO(N?)fzﬁ Wl) = L3*1()‘) ®E ( B?r’TLg (X83 1)@01:’371’)

(4.25) _ b
Hl(Ng_i, Wz) = L3—i(5i . )\) XRE (ZBﬁLg Z(XSS L) @DPS 1)
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We notice that Z(Ls—i(Q,)) acts on Lz_;(A) and Lz_(s; - A) (resp. 03 . and

. . Ls_;
oo 3—i oo
m32,.1) via different characters, and that ¢y (x5 ,) has cosocle 1y, ,. Hence

we deduce from (£.25]) the equalities
EXti3_i(Qp)7)\ (Ho(N3—i, W;), Ls—i(s; - A) ®p W??ii,l) =0
Homy, ,(q,)x (Hi(Ns—i, Wi), Ls_i(si- \) @5 75°, 1) =0
which imply by Lemma 2] that
Extgr, @, (Wu Fals (Ms—i(—s; - M), 71—3031'71)) = 0.
Hence we finish the proof of (£23)) by the embedding (£24). O

Lemma 4.8. We have for each i =1,2:

EthGLIS(Qp)q)\ f()\) ®E U}Ogj —_— Csi,Si s C?f,,l) — 0
EXtéLs(Qp)J\ Z(/\) ®F v(I)—_’zﬁ - 0521',81'5371' ) Csi,sz) =0
EthGLg(Qp),)\ Z(A) - O;i781'837i Y Csli,l) = O
EXtéLs(Qp)»)\ Z(A) ®E Stgo 0821',1 ’ C-giasis?)—i) =0
Proof. We only prove that
(4.26) EXtér, Q) ( IO\ @5 vE — Caps, 031,,1) —0

as the other cases are similar. The surjection

fg;j(Ms—i(_/\)v T3 i2) = L)) g vp, — Csiss
and the embedding
C’il — f%]ii(MB—i(—Si “A)y T3i0)

induce an embedding
(427) EXt%}Lg(Q,,),)\ (Z(A) QF UOPCI-) - Osi7si ) Ci,l)
= Exthry i, (Fo (Ms-i(=A), 75200), Fo (Ma-i(=s: - N), 752;1)) -

It follows from the second paragraph of the list before Corollaire 5.2.1 of [BrelT]
that

Ho(Ns_i, Fa® (Ms_i(=)), 75%,5)) = (Ls—i(\) ® Ls_i(si - \)) @6 752, 5
and
Hy(Ns_i, Fa® (Ma_i(=A), 75%,))
= (Ls—i(si - N) @ Ly_i(sis3-i - \)) QE 75,5 @ Ig?{ﬁ's_i (s,-0)
® Ipii, (0six OB X¥as,)
We notice that Z(Ls—;(Qp)) acts on each direct summand of
Hi(Ns—s, Fp® (Ms_i(=X), 75°,5))
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(k =0,1) via a different character, and the only direct summand that produces the

- . iLs_;
same character as Lz—;(s; - A\) @ 752, 1 is Ipl . (ds,.x). However, we know that

Li_; Ls_;
COSOCL;_;(Qp),A (IB%LS,i (581"/\)) = IB%Lg,i (6834&')\)
and thus
Ls_; T [e)
HOIIIL37i(Qp)))\ (IB%Lg,i (5337131..)\) s Lg_i(sz’ . )\) X 7T3—z',1) = 0

As a result, we deduce the equalities

EXtr, (A (Ho(Ng_i, Fake (Ms_i(=)), 75%,,)), Ls—i(si- \) @& 7T§<ii,1) =0
Homp, ;(q,)x (HI(N3—i7 fgslj(MS—i(_/\)v 773?31',2))7 Ly i(si-\) ®p Tréxii,l) =0

which imply by Lemma [2.1] that

Exthr,(qua (FR (Mai(—=A), 75%,0), FRr (Ma_i(—si - A), 75%,1)) = 0.

Hence we finish the proof of (L20]) by the embedding (2T). O
Lemma 4.9. Up to isomorphism, there exists a unique representation of the form

0;37'8' 1
/ \
\ __—

L) ®gp vp

2
CS,;,l

8,8

and a unique representation of the form

Cl

83—i8i,53—i84
_— T C?
— _— 5i,5i83—i °

L) ®gp v,

CSiVSi,

Proof. We only prove the first statement as the second one is similar. It follows
from Proposition 4.4.2 of [Brel7] that there exists a unique representation of the
form
C;;g,isi,l -
cz,— e
Si,1 — _— Si,Si

but it is not proven there whether its quotient
(428) Cig_isi,l - qu‘,ysi

is split or not. However, If ([@28)) is split, then there exists a representation of the
form

0521',1 - f(>‘) QF ’U%j I Csi7si

which contradicts the first vanishing in Lemma[4.8] and thus we finish the proof. O



376 ZICHENG QIAN

Remark 4.10. Our method used in Lemma [£.8 and in Lemma [£.9] is different from
the one due to Y.Ding mentioned in part (ii) of Remark 4.4.3 of [Breld]. It is not
difficult to observe that

- Cslsfisml
: 1 2 —
(429) dlmEEXtGL3 (Qp)yA CSi,Si’ Csi71 - =1

L(\) ®p vy
and

Cl

83—i8i,83—iSq
/

Csi75i — =1

L()\) RF ’U%Zii

2
5i,5i83—4"

(430) dimEEXtéLS(Qp)v)‘

for each i = 1,2. Similar methods as those used in Proposition 4.4.2 of [Brel7], in
Lemma and in Lemma [£9 also imply the existence of a unique representation
of the form

CSS—'LShSS—'L

_— T Cl
T N

1
Si,l

or of the form

Cshsis?,,i - / Csi,l .

L(\) ®g St5°

5. COMPUTATIONS OF Ext II

In this section, we prove a few technical results which serve as a preparation
to the construction and study of ¥™%(\, .4, %, %) in Section [l Note that we
have defined the representation X(\,.4,.%%) in (Z22]), which will be the starting
point of the construction of X™1(\, %, %, .%). In order to add more and more
Jordan-Hélder factors into ¥(\, .2, %) until we build up S™0(\, 4, %, %), it
is necessary for us to understand the extensions of various small length represen-
tations by certain subrepresentations of X(\, .4, %). We compute the dimension
of various such Ext-groups in this section, and a notable result is Proposition [(.4]
which excludes the existence of certain representations of specific forms, using a
key input from Proposition A summary of different representations defined in
this section can be found in Remark .10

We recall the definition of ¥;()\,.Z) for each i = 1,2 and £ € E from the

paragraph right before ([22T]).

Lemma 5.1. We have
dimEEXtéLs(Qp),)\ (Cs,;,s,',, Zi(A"’%)) = 1
for each i =1,2.
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Proof. We only prove that
(5.1) dimpExtgr, gy (Corsns T1(A,241)) =1

as the proof of the other equality is similar. We note that X1 (),.%) admits a
subrepresentation of the form

1
s281,1
def — 00 2 o
W= L(\) ®p St5” — O,

~

L(\) ®@g v

due to Lemma 3.34, Lemma 3.37 and Remark 3.38 of [BD20]. Therefore 31 (A, £1))
admits a separated and exhaustive filtration such that W appears as one term of
the filtration and the only reducible graded piece is

1
s281,1

def 2
Wi = 051,1\

L\ ®g Uj';‘l’

It follows from Lemma 4.4.1 and Proposition 4.2.1 of [Brel7] as well as our Lemma[0l
that

(52) EXtéLs(Qp),)\ (051751, V) = O

for all graded pieces V different from V;. On the other hand, we have
(5.3) dimpExtgr, ) (Coisis Vi) =1

due to [@29)) and

(5.4) Extdr, ) (Corsr LN ®pSt5°) =0

by Proposition 4.6.1 of [Brel7]. Hence we finish the proof by combining (5.2)), (5.3)),
(E4) and part (ii) of Proposition O

We define X277 (), %) as the unique (up to isomorphism) non-split extension given
by a non-zero element in

EXtéLg(Qp),)\ (Csi,si ) Ez(Aa Z))

for each i = 1,2. Then we consider the amalgamate sum of ¥ (A, %)) and
YT (A, %) over St§"()\) and denote it by Xt (), .4, .%). In particular, 2+ (), .4, %)
has the following form

VB (A) —— Coys
(5.5) St5"(\) T .
vpy (A) —— Ciy.s

Lemma 5.2. We have
dimpExtly, () (Z(A) REvE zj(A,gi)) _3

for eachi=1,2.
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Proof. By symmetry, it suffices to prove that
dimpExtgr, g, (E) @evf, T (A, 2£) =3.
This follows immediately from Lemma 3.42 of [Brel?] as our X7 (\,.%]) can be

identified with the locally analytic representation II!(), 1) defined before (3.76) of
[Brel7] up to changes on notation. O

Lemma 5.3. We have

dimpExtér, g0 (L) ®pvE, T\, 4, %)) =2
for each i =1,2.
Proof. The short exact sequence

230\,32) — EJF(/\,»%,@%) — ( ”?D?()‘) —Cs, s, )

induces the following long exact sequence

Homar,(q,) (E0) @5 0f, 0B () — Cops, )
< Bxtgr, (g, (L) @605, 35\, %))
— EXtGLg Q,).A ( ()\) ®E ’Uj.)(i, Z+()\,gl,$2))

— Extéi, ) (V) €505, vB() — Cars ).

According to Proposition LT and Lemma [£.4] we observe that

dimgHomgr,(q,),A (f(/\) @pvp, Vp(A) —Cs s ) =1
and
EXtéLs(Qp)J\ (L()‘) ®E U%(iv U?DI;(A) - 051781 ) =0

by a simple dévissage, which together with Lemma [5.2] and the long exact sequence
above imply that

dimEEXté}LS(Q,,),A (Z(A) QF ’U(])D?a E+()\7$17$2)) =2
The proof for
dimpExtlp,y (0 (FN) @5 v, BT\, 241,.4)) =2
is parallel. O
Proposition 5.4. We have
EXt%}Lg(Q,,),)\(W?)—iv Zj_(/\"’%)) =
and
Extgr, ) Ws—i; Zi(A,£)) =0
for each i =1,2.
Proof. 1t is clear that
Homgr,(q,).x (Ws—i, Cs,s,) =0,
which together with a simple dévissage give us an embedding

Extéryq,n Ws—ir Zi(A, £)) = Extir, ) (Ws—is BF (A, 4))
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for each ¢« = 1,2. Without loss of generality, it suffices to show the vanishing
(5.6) Extgr, ) (Wa, 7 (N, £1)) = 0.

We define v & ATy, (which is the restriction of A from T to T, via the embedding
v Ty = T) and view X (v, £1) (which is defined before Proposition 35) as
a locally analytic representation of L;(Q,) via the projection L1(Q,) — GL2(Q,)
and denote it by Ezl()\,.,%). We note by the definition of ¥;(X,.Z1) (cf. Sec-
tion [24]) that we have an isomorphism

i) S I8 (8,00 20)) / (B0 — I ).

Upon viewing I(s-v) as a locally analytic representation of L1(Q,) via the projec-
tion L1(Q,) — GL2(Qp), we deduce an isomorphism

031781 = SOCGLs(Q,) (ISIL3 (f(s . l/))) ,
which together with the short exact sequence

S, A) = B (0, A) - I(s-v)
implies an injection

SHO ) = 182 (SF,0,4)) / (B 0) — I ).
We use the shortened notation
def an T
v (550, 2) [ (vBO) — I ) -

and obtain an injection (using a vanishing of Hom)
(5.7) Extér, g (Wa, TN, £1)) = Extér, g,y (W, V).

We clearly have an exact sequence
(5.8) Exth, g, (WQ, 161 (zgl(A,.ﬂ)))
— Extly,quya (Wa, V) = Extir, ) (W2, V(A —— T(N) ) .

We note that W, = @'%L"s (0%,) (cf. (53) of [Brel7]). Then we deduce from (48) as
well as the first paragraph of the list before Corollaire 5.2.1 of [Brel7] that

Ho(Ni, Wa) = Li(N) @ (i, () &5
Hi(Ny, W) = Li(ss-\) @g (iggh(ng) ® aopj)
Hence we observe that
Homp, (q,)» (Hi(N1, Wa), £f (A,4)) =0
from the action of Z(L1(Q,)) and
Extr, q,)x (Ho(N1, Wa), S} (A, 4)) =0
according to Proposition and the natural identification
ExtL, (q,)A(— =) 2 Extar,q,) (= —)-
As a result, we deduce

(5.9) Exthyq, (Wor 187 (55, (04))) =0
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from Lemma 2,11 We know that

(5.10) ExtAr, Q) (WQ, v (A) — I(\) ) ~0

due to Proposition .1l Lemma and a simple dévissage. Hence we finish the
proof of (5.0 by combining (5.7), (58), (59) and (GI0). O
Lemma 5.5. We have

(5.11) dimpExtgr, ) (L), SF (A, 2)) =3

for eachi=1,2,

(5.12) dimpExtgr, ) (L), ST\, 21, .2)) =2

and

(5.13) dimpExtgr, ) (L), ST\, 21, %)) = 1.

Proof. We claim that

(5.14) Extgr, ) (EOV), Css) = Bxtdr, gy (L), Cs,s,) =0

using Lemma 4] and Lemma Hence the equalities (512) and (GI3) follow
directly from Lemma 2Tl and (5.14)), using a long exact sequence induced from the
short exact sequence

S\, %) = BT (N, L) = C, s,
Due to a similar argument using (5.14), we only need to show that
(5.15) dimpExtgr, q,) (L), Ti(A, Z)) =3
to finish the proof of (EI1). The short exact sequence
SR < Ti(A,Z) > v ()

induces a long exact sequence

(516) EXtéLS(Q‘))yA (Z(A), EZ()\,DZ)) — EthGLg(Q;,))\ (Z(A), 'U?DILI()\))
— Extgr, @, (L), St3°(N) = Extgr, g, (LD, Zi(A,£))

— EXtQGLS(Qp),)\ (L(A), ’U?DILI(A)) .
We know that
dimpExtgr; g0 (L(A), St§*(A)) =5

by Lemma 271 It follows from Proposition EIl Lemma [£4] Lemma and a
simple dévissage that

(5.17) dimpExtér, g, (L), vE (V) =2
and

(5.18) ExtéLS(QPM (L(N), v (X)) =0.

In order to deduce (BIH) from (EI6), it remains to show that
(5.19) Extgr, g,y (LY, Zi(A, Z)) = 0.

The short exact sequence

(V800 =T ) = I8 (2.0, 20) = 50, 2)
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induces

Extérq, . (L), 0B 00 —Z(\) )
— EXt%}Lg(Qp),)\ (Z(A)7 II%LB (ELi(/\’-zi))) — EXtéLS(Qp),,\ (L), 2\, £))
by the vanishing
Extéryq,a (L), vHL () — () ) =0

using Proposition [£.I] and Lemma Therefore we only need to show that

(5.20) dimpExtl, g, (ZO), v () —I() ) =1
and
(5.21) dimpExtie, g, (B0, 157 (50,0 £4)) = 1

The equality (5.21]) follows from Lemma 2] and the facts
dimpExty gy 1 (Ho(Ni, L(V), Tr,(\, %)) =1,

HOHlLi(Qp))\ (HI(NZ‘, L(/\)), ZLL(/\,Z)) =0

where the first equality essentially follows from Lemma 3.14 of [BD20] and the
second equality follows from checking the action of Z(L;(Q,)). On the other hand,
E20) follows from (EIM) and Proposition B by a simple dévissage. Hence we
finish the proof. (]

Proposition 5.6. The short exact sequence
L)\ ®g vp, = Wi — L())

induces the following isomorphisms
(5.22)

EXtéLS(Qp),A (E(A) ®p VP, E?(%Z—)) = EXtéL3(Qp),,\ (L), ZF(\,4))
and
(5.23) EXthL, (@, (f()\) OB UE z+(A,zl,$2))
= EXt2GL3(Qp),/\ (LN, ST\, 4, %))
for each i =1,2.
Proof. The vanishing from Proposition [5.4] implies that
EXt1, Q) <Z(>\) DpvE._ zj(x,.z-)) — Extip, g (B, ZF(A2))

is an injection and hence an isomorphism as both spaces have dimension three
according to Lemma and Lemma The proof of (5.23) is similar. We
emphasize that both (5:22)) and (523)) can be interpreted as the isomorphism given
by the cup product with the one dimensional space

Exthiry(qua (LA IO @5 03 ) |
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We define
(5.24) SN, L, L) E SN, L, L) /D) @p St and S0(A, %)
LN, Z)/L(N) ©p St
for each i =1, 2.
Lemma 5.7. We have
dimpExtly, () (f()\), zb(x,zl,,%)) ~ 1

Proof. We define ¥~ (\,.4, %) as the subrepresentation of ¥°(\,.%;,.%) that
fits into the following short exact sequence

(5.25) SN L, L) = (N4, L) (C,, & CLL L),
(cf. (@24) for the definition of C}, ;, C! |, CZ | and CZ ;) and then define

Y= (N, 2L, %) as the subrepresentation of X%~ (), 4, %) that fits into
(5.26) X7\, L, L) < ST (N, A, L)
(2 —TM ey )o (4 —IMesg )).
It follows from Lemma 4] that
Extgr, (LY, V) =0
for each V' € JHgr,(q,) (E"7__()\,$1,$2)) and therefore
(5.27) Exthiy g (L), 5777 (A4, %)) =0

by part (i) of Proposition On the other hand, we know from Lemma [£.4] and
Lemma [£7] that there is no representation of the form

C’ghl —L(\)®gp vE — L(\)
which implies that
(5.28) Exthry g (EV), €21 — L) @p o ) =0

for each ¢ = 1,2. Hence we deduce from (5.26), (527), (528) and Proposition
that

(5.29) Exthr, () (Z(A), Eb’*(A,gl,gQ)) —0.

Therefore (5.28) induces an injection
(5.30)

ExtGr,(Q,) (Z(A), Eb(A,flw%)) = Extér, g, (L), CL 1 @CL ).

Assume first that (B.30) is a surjection, then we can choose a representation V
represented by a non-zero element in EXtéLS(QP))\ (L(N), 2°(\,-%41,.-%)) lying in
the preimage of ExtéLa(Qp)’)\ (L(X), C4, 1) under (5.30). Note that there is a short
exact sequence

SN L) = (N, L, L) - R (D).
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We observe that L(A) lies above neither C1 | nor L(\) ®p v inside Vj by our
definition and (5.28), and thus V; is mapped to zero under the map

[ Extér (f()\)a Eb()\a-iﬂl,fz)) — Extgr, g (D), vB(N)
which means that Vj comes from an element in
Ker(f) = Extér,q,)a (Z(A), z’;(A,gl))
and in particular
(5.31) Extbryqua (EO) THA2) ) 0

The short exact sequence

L(\) ®p vy, < Wa — L(\)
induces an injection
(5.32)  Extly,q,ya (Z(A), SEO, zl)) < Extlr g, (WQ, SEO, zl)) .
On the other hand, the short exact sequence
(5.33) L) ®p St3° = T1(\,.4) - Z1(\,.4)
induces a long exact sequence
Extgr, g,y (Wa, L(N) ®5 St5°) —= Extir, g, (Wa, $1(A,21))
— Exthr, Q) (WQ, E?(A,iﬁ)) — Ext?r,q,y (W, LY ®5 St5°)

which implies
(5.31)  Exthy, g, (We, T1(0-2A)) = Extlr, g, (WQ, SO, .zl))
as we have

Extr, g,y (Wa, LA ®5 St5°) = Extér, g,y (W2, L(A) @5 St5°) =0
from Lemma 42l We combine Proposition 5.4, (532) and (5:34) and deduce that

EXtGL,(Q,)0 (f()‘)v Ebl()vo?ﬁ)) =0
which contradicts (B.31)). In all, we have thus shown that
dimpExth,q, ) (f()\), zb(x,,s,ﬂl,gz))
< dimpExtg, q,)a (L), CL 1 & CY, ;) =2

s1,1

(5.35)

by combining Lemma [£4]l Finally, the vanishing
EXtéLs(Qp)7)\ (Z()\), Z()\) ®E Stgo) = O
from Proposition ] implies an injection
EXtéLs(Qp))\ (E(}\), E(}\,$17$2)) — EXtéLS(Qp)7)\ (E(}\)7 Eb()\7fl,$2))
which finishes the proof by combining Lemma 217 and (E35]). O

Lemma 5.8. We have

dimEExtéLS(Qp)J\ (Wo, B\, A, L)) = 2.
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Proof. The short exact sequence
SN, L) = BN L, L) vs (V)
induces a long exact sequence
(536) HOIHGL:}(QP)’)\ (Z()\) KR ’U?—.’;,ﬁ ’U?p];il()\))
— EXtéLS(QpLA <Z(>\) ®E U%.;—i’ E;’(A, z))
— Extér, g, (f()\) ®pvE Zb()\,,fl,fg))
— Exthr, @,y (f()\) OB UE, v?;’:fi()\)> .
It is easy to observe that
dimpHomgr,(q,),A (f()\) ®F vp,_,, U%z,i(A)) =1
and
EXtér, () (L(/\) Dp vy, U;ggfi(x)) ~0

from Proposition 1] and Lemma 4l We can actually observe from Lemma [£.4]
that the only V € JHgr,(q,)(3}(), %)) such that

EX@LS(QPM (Z(/\) ®F Vp_., V) £0

isV = CSQ%M and
dimpExté, g, (f()\) DpvE._, 03371_’1) —1.
Hence we deduce that
Exthiyqua (L) @ 5, TIA4)) <1

and therefore (using (5.30]))
(5.37) EXtér,(q,)a (Z(A) opvE z"(A,fl,fg)) —0
for each © = 1,2. The short exact sequence

L) ®p (vB ®vpg) < Wo — L(A)

induces
EXt%}Lg(Qp),,\ (Z()\), Eb(/\,-fha%)) — EXt%}Lg(Qp),/\ <W0, 2"(&.21,9%))

— ExtéLs(Qp)’A (Z(A) ®r (vE ®vpy), zb(/\,,,sfl,fz))

which implies
(5.38)
Exttin, (@ (L), O 21.24)) & Extlr,qua (Wor 'O 21,.2))

by (537). Finally, the short exact sequence [5.33]) induces
EthGL:S(Qp),)\ (WO, Z()\) ®E Stgo) — EthGLIS(Qp)q)\ (WO, E()\,gl,G%Q))
— Extd, g, (WO, Zb()\,fl,fg)> — Ext?r,q,yn (Wo, IOV ®5 St5°)
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which finishes the proof by Lemma (5.7 (5.38), and the fact
dimEEXtéLg(Qp),)\ (I/I/O7 Z(A) ®E Stgo) =1

and
EXtéL3(Qp),)\ (WQ, L(A) ®E Stgo) =0

coming from Lemma 3] O
Lemma 5.9. We have the inequality
dimpExthy, g, (WO, V() —— C s ) <9
for each i =1,2.
Proof. We know that
Extér,(q,)a (Z(A) ®p v, C;,l) = Extlr, (g, (f(A) ©pvE, L\ ©p ujg,j) =0

for 7,7 = 1,2 from Proposition 1] and Lemma [£4] and thus
Extér,(q,)a (Z(A) ®5vE, v?;;(x)) —0
for i, = 1,2 which together with (5I7) implies that
(5.39)  dimpExtgr,q,)x (Wo, v (V) < dimpExtgr,qya (Wi vB (V)

< dimEExtéLS(Qp)y)\ (L(N), v3(N)) — dimgHomgy,(q,)x (L(A) @5 vg, vB(N))
=2-1=1.

We also note that we have
EthGL:S(Qp),)\ (Z()\), Csiqsi) = EXtéLs(Qp),A (f(}\) ®E U%j, Csiqsi) = 0

by Lemma 4] which implies
(5.40)

dimpExtgr, q,)x (Wo, Cs,s,) < dimpExtGr ) (f()\) ®F vE_, c) =1
where the last equality follows again from Lemma 44l We finish the proof by
combining (.39 and (E40) with the inequality
dimEEXt%}Lg(Qp),A (Wo, U?‘:{]()\) _ Cs,;,s,', )
< dimpExtgr, ) (Wo, 08/ (V) + dimpExtgr, g0 (Wo, Cs,s,) -
O

Remark 5.10. The representations that appear in this section can be summarized
by the following diagram

D\, L) <—— S\, L) 5\, L)

) ]

Y\, L, L) <— (N, L, L) ST (N, A, L)

for each ¢ = 1,2. Note that the first (resp. second, resp. third) column is defined

in (B24) (resp. (222), resp. (&H).
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6. THE FAMILY ™%\ 2, %, L5)

6.1. Construction of XM (\, %, %, .%). In this section, we finish our construc-
tion of XM\, A, %, #3) (cf. the paragraph before (6.28)), using results from
Section A summary about the technique used in this section can be found in

Remark 6111
Lemma 6.1. We have the inequality
dimpExtgr, g0 (Wo, BT\, 21,.%)) <3
Proof. The short exact sequence
S\, A, L) = ST\ A, L) —» (Csys, @ Csys,)
induces the exact sequence
(6.1) Extgr,q,yan (Wo, B\, 21, %)) < Extar, g,y (Wo, TN, 24, 2))
— ExtGLg( Q) Wo, Csy s, ©Csy )
We know that
dlmEExtGL @)x Wo, Csy s, & Csysy)
= dlmEExtGLs(Qp)ﬁ)\ (Wo, Cs,.s,) +d1mEExtGL @ Wo, Csy5,) =14+1=2
by Lemma 4] and Lemma L5l We also know that
dimpExtgr, g0 (Wo, B\, 21, 2)) = 2
by Lemma [5.8 and thus we obtain the following inequality:
(6.2) dimpExtér, g, (Wo, ST\, £, %))
< dimEExtéLS(Qp)J\ (Wo, X(\,ZA, %))
+ dimgExtgr, q,) 0 (Wo, Csys & Coysy) =2+2=14.
Assume on the contrary that
(6.3) dimpExtgr, )0 (Wo, BT\, 2, %)) =4
The short exact sequence
SEA) = THO L, L) > (0B — Cuas )
induces a long exact sequence

(64) EXtGL (Qp),A (W(), ()\,31)) — EthGL?)(Qp)))\ (WQ, EJF()\,Zl,ZQ))

- EXtéLg(Qp),)\ (Wm V(A — Csys, )
which implies
(6.5) dimpExtgr, g, (Wo, 1 (A, £1)) > 2

by (63) and Lemma We consider a separated and exhaustive filtration of
Zf()\, %) whose only reducible graded piece is

0521 11— Z()\) ®E Uj.jol .
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It follows from Proposition f.J] Lemma [£.4] together with a simple dévissage that
EXtéLg(Qp),)\ (Z()\) RF ’U?:v?, 0321,1 - Z(A) X8 /UIOD?) = O,
which together with Lemma 4] implies that
EXtéLg,(Qp),)\ (Z()\) ®E ’U(});l), V) =0

for all graded pieces V # L(\) ®g St5° of the filtration above. Hence we deduce by
part (ii) of Proposition an isomorphism of one dimensional spaces

(6.6) Extgr,(q,a (L) @rvp, LA) @p St°)

= ExtéL3(Qp)7/\ (LN @ vy, ST\, 4)).
Then the short exact sequence

LX) @p vp, — Wo — Wy
induces a long exact sequence
Extar, g,y (War EF (A, 4)) < Extar, g,y (Wo, E7(A,241))

— Extér, g (L) @5 vE, ST(A,24)),

which together with ([G.5) and (G.6) implies that
dimgExtgr, )0 (Wa, EF (A, 4)) > 1.

This contradicts Proposition 5.4l Hence we finish the proof. (Il

Proposition 6.2. We have
dimEExtgLS(QP%A (Wo, ST\, 4, %)) =3.
Proof. The short exact sequence
L) ®p (v ®@vp) < Wo — L(A)
induces a long exact sequence
(6.7) Extgryq,a (LAY, TT(\, 21, %)) < Extar,q,)a (Wo, 5T\, 4, 2))
= Exter, @i (EA) @5 (07, @vF), B7(\ 4, 2))
— ExtQGLS(QP)’,\ (f()\), SN A, L))
and thus we have
(6.8) dimpExtgr, )\ (Wo, BT, Z1,.%))
> dimpExtgy, )\ (LY, T\, £, %))
+dimpExtgr, ) (L) @5 (vF, ®0vF), T\, A,.2%))
— dimpExtgr g, (L), 5T\, A, £)=1+4-2=3

due to Lemma (5.3l and Lemma [5.5] which finishes the proof by a comparison with
Lemma 0
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We define Xf(\, .21, .%) as the unique non-split extension of X(\, .Z;,.%) by
L()\) (cf. Lemma ZII)) and then define X4+ (\, .2, %) as the amalgamate sum of
YEHN, LA, L) and ST (N, L1, L) over X(\, L, %), Hence XF(\, 21, %) has the
form

VBN

vi, (A

—

St5" () T

and X5 (), .21, %) has the form

Then we set
def

SN, L, L) L RN L L) /LN @p St
for « = {+},{t} and {f,+}.
Lemma 6.3. We have
Extgr, ) (L), SHA, 2, %)) = Extgr,q,)a (LAY, SPT(N, 24, 2)) =0
and
dimpExtgr, g\ (L), THA, 2, %))

(6.9) . -
= dlmEExtém(Qp)’)\ (L()\), 2ﬁ7+()‘7$17g2)) =2.

Proof. According to (5I4) and a simple dévissage, it suffices to show that
Extgr, g,y (DY), SHA, 2, 2)) =0
and
dimEEXtéLg(Qp),)\ (Z()\), Eﬁ(A,gl,agQ)) = 2.

The desired results then follow from Lemma 2111 the long exact sequence

Homgr,(q,) A (L(A), L(V)) = Extgr,q,)a (L), (O, £, 2))
— Extir, ) (L), BHA, 24, 2)) = Exter, ) (LY, TOV)
= Extar,qn (L), B\ 2, 2)) = Extgr,q,)a (L), SHA, 24, %))
— Bxtgr,q,)a (L), Z(V),

and the equalities (cf. Proposition E.T])

dimpg HOIanL;;(Qp),)\(_Z()‘)a_Z()‘)) = 1
Eth}Lg(Qp),/\(E()‘)’ L) =0
Extgr, q,) A (L(A), L(A) 0
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Remark 6.4. Tt is not difficult to observe from the proof of Lemma and that of
Lemma that the following diagram

+
Eu,fl,zg)(E (A,$1,$2)> S\, A, L)
SEHN, A, L)
induces isomorphisms between two dimensional E-vector spaces
Extgr, ) (L), (N, 21, %))
for x = @, {+}, {4} and {f, +}.

Lemma 6.5. We have
(6.10)
EXt%}Lg(Qp),)\(L(A)v SN, L, L)) = EXt%}Lg(Qp),)\(L()‘)a SR\, AL, L)) =0

and

dlmEEXtéLg(Qp),/\(z()\)’ Eu7b(>\,$17$2))
= dimpExtgy, g A (L), VPN, 241, 2)) > 1

Proof. According to (5.14) and a simple dévissage, it suffices to show that

(6.11) Extér, (L), S\, 24, %)) =
and
(6.12) dimpExtgr, g, A (L), B\, 4, %)) > 1

The equality (GII) follows from Lemma 7 Proposition 1] and a long exact
sequence induced from the short exact sequence

SN L, L) = S (N, LA, L) - L(N).
The inequality (612) follows from Proposition @1} (€11]), Lemma 6.3l and the long
exact sequence
(613) EXtéLS(Q )))\(Z(A), Eﬁvb()\7a§/ﬂ1’$2)) — EXtGLg(Qp) )\(Z(A) L(A) ®E Stgo)
%ExtéLg(Qp)’A(f(/\) YN A, L)) = EXtGL3(QP VI, SN A, L))

as we have

dimpExtgr, q,)A(L(V), T (N, 4, 2))
> dimgExtgy, )\ (L(A), T, 4, %))
— dimpExtgy, g, (L), L) ®pSt5) =2-1=1.
O
We use the shortened notation £ < (.,2”1 , Lo, L, L) for a tuple of four elements
in E. We recall from Proposition an isomorphism of two dimensional spaces

(6.14)
Extgr,qn (EO) @p 03, ST\ 21, %)) S Extér, g, (L), 5T\, 4, 2))
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for each ¢ = 1,2. We emphasize that the isomorphism (@.I4]) can be naturally
explained by the cup product map

(6.15)
Extgr, g,y (DY) @603, ST\ 2, %)) UEtGr, g, (EV), LA @pvF)
— Extgr, g, (L), ST\, 4, %))
where EXtéLS(QP))\ (L(N), L(X) ®g vp) is one dimensional by Proposition 1l Ac-
cording to Lemma [Z11] and Remark [6.4] we may abuse the notation
{Kf(bl,valp A b2,va1p)u CO}

for a basis of ExtéLS(Qp)7/\ (L), (N, A, %)) for each * = @, {+},{t} and
{#,4+}. In particular, the element

co + ZLk(b1val, Abaval,)
generates a line in Extgy, g )5 (L(A), £T(), 21, .2)) for each £ € E. We define
SF(N, L, L, L)) as the representation represent by the preimage of

co + L (b1 ,va1, A b2val,)
in B

EXtéLs(Qp),A (L()\) ®E U%j, E-"_(}\,gl, 32))

via ([B.I4), for each i = 1,2. Then we define X+ (), ) as the amalgamate sum
of Xf (N, 4, %, %)) and X5 (\, 4, L, L) over 2T(\, L, %), and therefore
YT (N, &) has the form

v??rll()‘) - Cslysl - Z(A) ®F ’U?:.’;
st () T B .
U?’g ()‘) - CS2182 - L(A) (295 U(])D?

We define 2% (), %) as the amalgamate sum of ¥ (X, £) and $#(\, %, %) over
Y\, LA, L), and thus X5+ (), £) has the form

Cslm - Z(A) (295 U?:z

S2,52 T E(A) (295 U(])D?

We also need the quotients
def def

ST L) Z ST L)L) @5 857, T, L) = SN L) /L) @6 St
Lemma 6.6. We have the inequality
dimpExthr 0 (D), S (0,2)) < 1.
Proof. The short exact sequence
PN, L) = SR (VL) - L) 95 (v, © vF)

induces an injection

(6.16)
Extar, @, (Z()\), Zﬁﬁvb()\,z)) = Extéry g (L), L) @5 (vF, @ v3))



DILOGARITHM AND HIGHER Z-INVARIANTS FOR GL3(Qj) 391

by Lemma Note that we have
dimpExtgr, ) (L), L) @5 (vF, @ vp))) =2

by Proposition &Il Assume first that (@16 is a surjection, and thus we can choose
a representation Vo represented by a non-zero element lying in the preimage of
L(A\) ®p v, under ([G.I6). We observe that the very existence of Vj implies that

(6.17) EXté1,(qu). (W2 S (A4, fg)) £0.

We define
=7 2) € S L) /L) 95 St
and thus obtain an embedding

RO WEZARES S IOWZ 7N

for each ¢ = 1,2. We notice that the quotient Eﬁ’Jr’b()\,fl,fg)/Ef’b()\,fl) fits
into a short exact sequence

(VB — I ) = SO A, L) ST, Z) = Co
We observe that
(618) EXtGLg( ) (VVQ7 052’52) = 0

from Lemma 4] and part (i) of Proposition It follows from Proposition 1]
Lemma [£4] and a simple dévissage that
(6.19)

EXtéLS(Qp),)\ (Z()\) ®E ’U?pz, Csll,l) = EthGL3(Qp)7>\ (Z(A), Csl‘l,l _— Z(A) ) = O
Hence if
Extbr, g (Wor Chi—I() ) £0,

there must exist a representation of the form
0811,1 —L(\) — L\ @x vp,
which contradicts ([6.19) and Lemma [£7 As a result, we have shown that
Extar, ) (W% Cin — LY ) =0

which together with Proposition 1] and part (i) of Proposition implies

(6.20) Extér, Q) (WQ, V(A — T(\) ) —0.
Now we can deduce
(6.21) EXtéL,(qu). (WQ, SEH (N, L, 2) /ST O .,sfl)) -

from (6I8) and (@20). We combine ([6.21]) with Proposition 54 and conclude that
EXt1,(q, ) (W% Eﬁv+vb(A,gl,$2)) —0

which contradicts (617). Consequently, the injection (6.I6]) must be strict and we
finish the proof. O
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According to Lemma [6.5] the short exact sequence
YN L, L) = 2PN L) - L)\ @ (vE, V)
induces a long exact sequence:
(6.22)
Extgr, g,y (EOV), PN, 2)) = Extir,qa (L), L) @5 (v, ©vE))
L EBxtly, g0 (L), S9F(N20,.%)) .
According to (GI0) and a long exact sequence induced from
L)) ®p St = S4F (N, 24,.%) —» SHH (N, 4, %),

we obtain a natural embedding
(6.23) B B B
Extgr, ) (L), TN @5 St5°) = Extér, g,y (L), ST\, 4, %)) .

Proposition 6.7. We have
dimEEXtéLs(Qp),A(z()\)a SR\ 2) =1
and the image of f is not contained in the image of ([623)).

Proof. We use a shortened notation for the two dimensional space
def

M = Extgr, ) (LY, L) @5 (v, ©vE)) .
We have the following commutative diagram
(6.24)
1 - i ! 9 —
Extr, Q) (DY), B9 (A, £))— M —— Extr )0 (L), 9T\, 4, %))
h k l
_ J g _
EXt%}Lg(QP),A (LN, B8P (N, L) M —> EXt%Lg(Qp),,\ (LX), S8 (N,24, L))
where the middle vertical map is just an equality. We know that h is injective by
the vanishing B B
EXtéLg,(Qp),)\ (L()\), L()\) ®E Stgo) =0

and k has a one dimensional image by (G.I3])). Both ¢ and j are injective due to
(69) and (6I0). Therefore by a simple diagram chasing we have

dimpExtly, () (f(/\), E“’**b()\,i))
=dimgM — dimglm(g) > dimgM — dimgIm(k) =2-1=1
by Lemma [6.5] and therefore
dimpExtlr, g (E(/\), zﬁ*»"(/\,z)) —1

by Lemma Moreover, the map g has a one dimensional image and hence k o f
has one dimensional image, meaning that the image of f has dimension one or two
and is not contained in Ker(k) (which is exactly the image of ([6.23)). We consider
the restriction of f to the direct summand EXt%;LS(Qp),,\ (L(N), L(X) ®p vy) which
together with (cf. Remark [64])
(6.25)

Extgr, ) (EOV), BT\, 2, %)) = Extgr, q,)a (LA, ST, 24, %))
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gives a map
(6.26) B B B
EXtéLg(Qp),A (LN, LN @p o) — EXtéLS(Qp),,\ (L), (N, A4, 24)) .

According to our definition of X% (), %), the image of (6.20) is indeed given by
the line

(6.27) E (co + L/ k(b1 var, Abaval,)) -
It is clear that (6.27) is different from the image of ([G.23]) which is exactly the line
Eﬁ(bl,valp A b2,va1p)~ O

Proposition 6.8. We have
dimEExtéLs(QpM (L), ZHT(\2)) <1
and the equality holds if and only if £ = L5 = L5 for a certain %5 € E.

Proof. The inequality follows directly from Proposition 6.7 and the fact that the
morphism % in ([624) is an embedding. It follows from (622)) that the equality

Extgr, ) (EOV, ZFF(N,2)) =1

holds if and only if the image of f is one dimensional. Then we notice from the
proof of Proposition that the image of

EXt%}LS(Qp))\ (E()\), Z(}\) ®E 'U%ol)

under f is [@27), up to the isomorphism ([@25]). Therefore the image of f is one
dimensional if and only if the two lines (627 (for ¢ = 1,2) coincide, which means
that

L =L =L
for a certain %3 € F. O

We use the notation S8+ (X, .2, %, %) for the representation ¥4 (), £) when
z = ($17327$37$3)'

We define S™0(\, .4, %, #3) as the unique representation (up to isomorphism)
given by a non-zero element in ExtéLs(Qp),)\ (LX), S F(N, £, %, £3)) according
to Proposition Therefore our Y™ (\, .4, %, ¥3) has the following form

v (n) == Goner — LN @ o,

(6.28) sy Ty . - () -

an )\ — - - _
UPZ( )\ 82752_L()‘) KR 7)}):'(1)

It follows from Proposition &1} Proposition[6.8 the definition of ¥™*(\, .4, %, £3)
and a simple dévissage that

(6.29) Extar, g,y (DY), (N, 21, %, %)) = 0.

Remark 6.9. The definition of the invariant %5 € E of XM (\, %, %, %) obvi-
ously depends on the choice of ¢y, and hence on the choice of a branch of p-adic
dilogarithm function which is Dy. This is similar to the definition of the invari-
ants £,% € FE which depends on the choice of a branch of p-adic logarithm
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function which is log,. Note that the choice of p-adic logarithm function naturally
determines a choice of p-adic dilogarithm function.

The following result will be useful in the proof of Theorem [T.1l
Proposition 6.10. We have
dimgExtér, g0 (Wo, 9T (N, 4, 2)) = 2.
Moreover, if V' is the locally analytic representation determined by a line
My ¢ Extgr, ) (Wo, BTN, 4, 2))

satisfying the condition that My is different from the image of [623), then there
exists a unique L3 € E such that

VSN A, L, L),
Proof. The short exact sequence
L(\) ®g (v, ®vp,) < Wo — L())
together with Lemma induce a commutative diagram
(6.30)
Extliny i, n Wo, V) —2m Bxtly, g, (Vi @ V3%, V) B Exty, g0 (EOV), V)

hi) hay hs)
Extér,q,)a (Wo, Vﬁ#)& Extér, @, (Vfﬂg @ V3, V“) o, Ext&r, g (L), VET)

where we use shortened notation V¢ for T(\) @ vE, VT for B\, A, %) and
Vit for R5T(N\, 2, %) to save space. We observe that go is an injection due to
Lemma [6.3] k; is a surjection by the proof of Proposition [6.2] h3 is an isomor-
phism by Proposition 1] and a simple dévissage, and finally hs is an injection
(due to an obvious vanishing of Hom). Assume that ho is not surjective, then any
representation given by a non-zero element in Coker(hz) admits a quotient of the
form

(6.31) Cla—— L) — V"

for 7 = 1 or 2 due to LemmalZ.4l However, it follows from LemmalZ.7lthat there is no
representation of the form (6.3T]), which implies that hs is indeed an isomorphism,
and hence k5 is surjective by a diagram chasing. Therefore we conclude that

dimgExtgr, q,)x (Wo, V)
= dimEExtéLS(Qp)7/\ (Vlalg ® V;lg, Vﬁ7+> _ dimEEXtéLS(QP),)\ (f(/\), Vn,+)
= dimpExtdy,q,) (Vflg ® Ve, V+) ~dimpExt?y, ) (L), V) =4-2=2.

The final claim on the existence of a unique %3 follows from Proposition 6.8 our
definition of ¥™™(\, 4, %, %) and the observation that the restriction of ks to
the direct summand

1 al
Extar,Q,).a (Vi 5 VM)

induces isomorphisms

1 N _
Exthr, (@, (V;“g, V‘H) = Exté, g, (B, VEY)
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which can be interpreted as the cup product morphism with the one dimensional
space

EXtéLS(Q,,),A (f()\), Vz‘a]g)
for each i =1, 2. |

Remark 6.11. We give a summary on main ideas behind various techniques used
in Section [ and Section [l Our overall goal is to construct the representation
YW\ L, Lo, L) using X(\, L, L) as one of the building blocks, but the tricky
point is what representation to add during each step of the construction. It is not
difficult to construct ¥4 (\, £, %) from N(A, L, %) by adding Oy, &, Csy.s,
and L()), each with multiplicity one, then the gap between X% (), %, %) and
Wi\, L, L, L) is the length three locally algebraic representation Wy. If one
adds L(A\) @ vF and L(A) @ vf;, first, one obtains ¥+ (), £) which depends on
four invariants. Then it is not always possible to add one extra L(\) to X% (), &Z),
as the exact sequence ([6.22]) really depends on the choice of & = (L1, %, L5, %s).
Nevertheless, we may consider the quotient

SEHP(N, L) = SR (N, L) /L) ®p St
which technically helps us determine exactly for which £ we can add the extra
L()\) (cf. Proposition [6.71and Proposition [6.8)). Having a local-global compatibility
theorem in mind, we expect that: if ¥%+ (), .£) embeds into any Hecke eigenspace,
an extra L()) should also appear in the Hecke eigenspace. Consequently, instead
of adding L(\) ®g vg, and L()\) ®g vy, first, we view Wy as a whole and study
the extension of Wy by L4+ (\, .4, %) (cf. Proposition and Proposition [6.10).
This will be crucial in the proof of Theorem [[Il A frequently used technique (cf.
Lemma 5.7 and Proposition [6.7) is the following: given a certain V € RepléL 3(Qy).E

which appears in our computation, if we cannot determine Ext]éLg(QpL A (V) di-

rectly, we study ExtéLg(Qp)’)\(-, V?) first (with V2 < V/L(\) @p St$°), and then
make use of a long exact sequence induced from

L) @pSte =V - V.

The idea behind is that V might depend on choice of invariants but V? doesn’t,
which usually makes the computation (via various dévissage) of Extey, 5@ (s V)

simpler than that of EXt]éL:S(Qp)’)\(', V).

6.2. Structure of Y™ (\, %), .%,.%s). In this section, we further clarify the in-
ternal structure of Y™ (\, .4, %, .#3) in Proposition 612 (6.42) and (6.43). In
particular, we want to describe all subrepresentations of X™®(\, %, %, #3) whose
cosocle is isomorphic to L()). The picture (6.28) certainly does not contain enough
information on this. At the end of this section, we also introduce the represen-
tation LM\ L, %, #) (cf. the paragraph before Remark B.14), which is
slightly bigger than Y™ (\, %, %, L3).

We define Y™~ ()\, .4, %, %) as the unique subrepresentation of
YWin(\ L, L, L) of the form

S3" ()
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which fits into the short exact sequence
(632) Emin’_()\,fhfg,gg) — Emin()\7$1,$2,g3) —» Z(A)GB?

We also define Y™n——()\, ¥4, %, %) as the unique subrepresentation of
L= (), L, L, L) of the form

L()\) ®E vy — Cs ,8
Stgn(A) <_ Py 1,81 ,
L(A) QF 'U?DZ - 082752
which fits into the short exact sequence
(633) Emin’ii ()\, ,,?1, .,%2, fg) — Zmim* (/\, .,iﬂl s 32, .,%3)
= (L) @ v5) @ (L) @p vf,) © C, 1 & C, 1.

The short exact sequence ([6.32) induces a long exact sequence

HomGLg(Qp),)\ (Z(/\), Z(/\)@Z) — EXtéLg(QP),)\ (Z()\), Zmin’_(/\,gl,fg,gg))

— EXtéLg(Qp),)\ (Z(A), Emin(A,gl,gg,gg)) — EXtéLg(Qp),)\ (Z(A), Z(A)@Z)
which easily implies that

dimEEXtéLs(Qp)’)\ (Z()\), Emin,— (>\7 $17327 g?))) =2
by Proposition @] and ([629). We consider a separated and exhaustive filtration
on LM (\ Z, %, %) whose only reducible graded pieces are
Cl 11— L\ ®g vE
for ¢ = 1,2. According to Lemma [£.4] and Lemma [£.7] we deduce that
EXtéLS(Q})))A (Z(A), V) = O
for all graded pieces V' of the filtration above, which implies that
Extgr, ) (L), E" 77\, 4, %, £3)) = 0.
Therefore ([6.33]) induces an injection of a two dimensional space into a four dimen-
sional space
(6.34) M™ = Extly g (L), S0 (N4, %, %))
= MT = Bxtér, i, (O, (ZOV) @pvE) & (L) @pv) & CL,, & CL ).
It follows from the definition of ™~ (X %), %, %) that we have embeddings
SN, L, L) = BTN A, L) = SN AL L, L)
which allow us to identify
M~ = Bxtlp, ) (L), SO\, A, %))

with a line in M™", We use the number 1,2, 3,4 to index the four representations
L(\)®@pvy, LA)@pvy, CL | and C} | respectively, and we use the notation M;
for each subset I C {1,2,3,4} to denote the corresponding subspace of M+ with
dimension the cardinality of I. For example, My, 5) denotes the two dimensional
subspace

Extar, ) (EOV), (L) @5 vE) @ (LA @ v3))
of M.
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Proposition 6.12. We have the following characterizations of M™™ inside M :
Mmin N M{i,j} =0 fOT {la.]} # {3a4}a
M™™ A\ Mgy g4y =M™ N Mpgay =M™ N Mg =M,
and
Mmm _ (Mmm N M{17273}) D (Mrnln ) M{17274}).
Proof. As C} | and C., ; are in the cosocle of £(X, £, %), it is immediate that
M~ C M{3,4}.

It follows from (G.28)) that
Mnlln g M{3’4}

and thus M™" N M3 4y is one dimensional which must coincide with M ™. The
proof of Lemma implies that AM™i" ¢ My 3,4y for each i = 1,2 and therefore
Mmin A My{; 3,4y is one dimensional, which together with the inclusion

M™" N Mg ay © M™™ 0 M 5.4
for each 7 = 1,2, implies that
M™™ N\ Myizay =M.
We note from Proposition [5.4] that that
M~ N Mgy =M NMy =0,
and thus
M™n A M3y = M™ 0 (Mi134y N M 3)) = (M™" N Mz,4y) 0 My 5
=M~ N Mg =0.
Similarly, we conclude that
M™ O Mg =M™ N My =0
for each {i,j} # {3,4},{1,2}. We define ymin =8\ 2, %, L) as the unique
subrepresentation of X™™~ (X, 4, %, %) that fits into the short exact sequence
SN A, L, L) o TN, L, L, L) — C’;hl @ C;z)l D Coyss1 1
and then define
L E (N 2 S, L) B eminsA(N 2 B, B) TN @ ST
Assume for the moment that M™i" N M1 2y # 0, then we have
Extér, g (L), SN, 4, %, %)) #0
which together with (cf. Proposition 1)
Extgr, g, (L), T(A) ®p St5°) =0
implies that
(6.35) Exthry g (D), S50 A, 2, %)) #0.
We observe that there exists a direct sum decomposition

ymin—E (N A, L, L) = Vi@ Vs
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where Vj is a representation of the form

C:
3-i8s,1 —
Cslsfisul - L()\) QF ,UIODZ—i
2 — T, —
Sipl — 0 s

Switching V7 and V3 if necessary, we can assume by (6.35) that
(6.36) Extgr, ) (LY, V1) #0.
We also have an embedding
Vi— 5P\, .4) — L\ ®p vE,

which induces an embedding (using a vanishing of Hom)

EXtéLS(Qp)7)\ (E(}\), Vl) — EXtéLS(Qp)A <Z(A), Ef’b(A,Zl) —_— Z()\) XRE 'U?D(; )
which together with (G:36]) implies that
(6.37) EXtr, () (f(/\), S, 2) — L) @5 0 ) £0.
The short exact sequences
LON)®EStE — 31(\, Z) — E?()\,fl), LO)®EStE — BT (A, .4) —» Ef’b()\,fl)

induce isomorphisms
(6.38)

EXtéLg(Qp),A (L(N), 1\, )
Extgr, g,y (L), TN, 4))

=~y Exteryqy)a (EO): ZHA,2))

= EXtéLS(Qp),A (f()\)a Ef’b(%.fl»
by Lemma Hence we deduce that

(6.39)  Extly,q,)n (WQ, E‘i(A,Zg) ~ Exth, (g, (WQ, g;b@,fl)) —0

from Proposition 5.4l and (6.38). The surjection Wy — L()\) induces an embedding
(using a vanishing of Hom)

X1, (Z(/\), Ei(A,zl)) < Extdr, ) (WQ, Em,,ﬂ))
which together with ([G39) implies that
EXt1, () (f()\), Ebl()\,,,s,ﬂl)) —0
and hence
3 b
(6.40) Extér,(q,)a (L(A), o (/\,.21)> — 0

by (I4) and a simple dévissage. It follows from (G39) and (6.40) that there does
not exists a representation of the form

SH(N4) — L) @p vE — L)

or of the form
E;ﬁb()\, gl) - Z()\) 9
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and therefore
EXthr, (@, (Z(A), S\ A) — L) @p X ) —0
which contradicts ([6.37). A a result, we have shown that
M™" 0 My 9y = 0.

As M~ & My, 4y for i = 3,4, we deduce that both M™in A M 5,3y and M™in A
My 3.4y are one dimensional. On the other hand, since we know that

(Mmin ﬂ M{1,2’3}) ﬂ (Mmin ﬁ M{1’2’4}) - Mmin ﬂ M{LQ} — 07
we deduce the following direct sum decomposition
Mmin _ (Mmin N M{17273}) D (Mrnin N M{17274}).

O

It follows from Proposition that the two dimensional E-vector space M™™®
has three special lines inside, given by M ~, M™" N M 23y and M™in A My 2,4y
We use the notation L(A)? for copy of L()\) inside L(A)®? corresponding to the
one dimensional space M™" N My 2,12y inside M min - and therefore we have a
surjection

(641) SO AL, %) — (€L, — I ) e (CL— T2 ).

In other words, given a subrepresentation V C Y™\ %, %, .%3) whose cosocle
is isomorphic to L(\), if the radical (minimal subrepresentation rad(V) C V such
that V/rad(V) is semisimple) of V' does not map surjectively to

T oo T 0o 1 1
P s s1,1
(L()\) Qg v 1)@(1/()\) ®F 7)1;»2)@0271@0171

then V is either X¥(\,. 2, %) (cf. M7), or the unique subrepresentation of
Lmin(\, L, L, L) with cosocle L(N)? (cf. M™in N Mgy 2,i42y), fori=1or 2.

According to our discussion above, the representation X™®(\, .7, %, .%3) has
the following form:

081,51 - L()‘) ®F ’U})’Z

o) = S
v () )
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If we clarify the internal structure of St3"(A), v (A) and v (A) using Lemma 2.4
then L™ (\ 7, %, #3) has the following form:
(6.43)

Remark 6.13. Tt is actually possible to show that all the possibly split extensions
illustrated in ([6.43]) are non-split. However, the proof of these facts is quite technical
and ([6.43)) is sufficient for our purpose (cf. Theorem and Theorem [[]), so we
decide not to go further here.

We observe that Y™(\ %, %,.%) admits a unique subrepresentation
ZEXt1>_()\,$17$2,$3) of the form

1
02 /08281,1 \C
s1,1 — _—s1s —
_— I\ @5 vE L(\) ®p v,

IL(\) @5 St
\

s2,1 —_— — 52,52

5152,1

which can be uniquely extend to a representation yExt! N\, A, %, L3) of the form:
(6.44)

1 1
o — Cszsl,l —_— C’ _— CV525175281 — 9
s1,l —— o — TSt — ___— s1,8182
L(\) ®p St3°
L) % L) o
\02 o ()®EUPQ\C _ IMesvr
s2,1 —_— Cl - — $2,82 —_— Cl _— 82,8281
s152,1 5152,5152

according to Section 4.4 and 4.6 of together with our Lemma Finally,
we define XM (N A, %, #3) as the amalgamate sum of X™0(\, .2, %, %) and
SE (N L, L, L) over SV (N L Ly, By).

Remark 6.14. Tt is actually possible to prove (by several technical computations of
Ext-groups) that the quotient

st (N A, L, L)L\ @ St3°
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and the quotient
Emm()\, L, %L, gg)/f(/\) KRE Stgo
are independent of the choices of %, %, %5 € E.

6.3. Relation to derived object. In this section, as a byproduct of our construc-
tion in Section GBIl we obtain an explicit complex (cf. Theorem [E18) of locally
analytic representations of GL3(Q,) that realizes the derived object constructed
in Definition 5.19 of [Schrll]. We use a shortened notation Modp(cLs(Q,),E),
for ModD(GLS(QP),E%(;/Z K which is the abelian category of abstract modules over

D(GL3(Qp), E) with DY(Z7 E) acting by 07 (cf. Section ] and Section 2.3] for

necessary notation). We define E§’+()\,$1,$2,$3) as the subrepresentation of
YN, 4, L, L) (defined right after Proposition [6.8) that fits into the short
exact sequence

SETN AL Lo, L) > SN, AL L, L) — L(N) @p vE
for each ¢ = 1,2. We use the notation D;(\, .41, %,.%3)" for the object in the
derived category D? (ModD(GL3(QP),E)’)\) associated with the complex

|:W?/y7i — E?’*(kﬁl,ﬁz,fa)’} :
Theorem 6.15. The object
Di(\, L, 22, L) € D’ (Modpcry(q,).5).0)
fits into the distinguished triangle
(6.45) LN — D\, A, L, L) — SPE N, AL 5 [-1] =
for each i =1,2. Moreover, the E-line inside
(646) EXtéLg(Qp),)\ (Z(A), Z()\7 gl, 9%2))
= Extgr, g, (L), ST (N, 4, %))

o~ Home( ) (Eﬁ,+()\7$1,$2)/[_2]7 Z()\)/)

Modp(cLz(Qp). E),A
associated with the distinguished triangle (6.45) is
(6.47) E(co+ ggl@(vaalp A bQ,valp))-

In particular, for each i = 1,2, D;(\, L1, %, L3) is isomorphic to the derived
object constructed in Definition 5.19 of [Schrll] (with Q there chosen to be zero) if
.,?1 = —g, ,,?2 = —.,E/ﬂ/ and.i”g :,,2””,

Proof. Tt follows from Proposition 3.2 of [Schril] that there is a unique (up to
isomorphism) object

D\, £, %, 23)" € D (Modp(Gry(q,),2)))
that fits into a distinguished triangle
(6.48) L) — DN, L4, Lo, L) — SEH(N, 4, L) [-1] =

such that the element in EXtéLs(QP)A (L(N), S\, L1, 2)) associated with (6.48)
via ([6.46) is (6.47). It follows from TR2 (cf. Section 10.2.1 of [Wei94]) that

(6.49) DN, L, Lo, L) — SETN, A, 5) [-1] — L[] ==
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is another distinguished triangle. The isomorphism (6.I4]) can be reinterpreted as
the isomorphism

(6.50) Homp,( )<Z“’+()\,$1,$2)’[—1], (T @5 uggo)>

) (250,44, %) 1, ZOY)

Modp(cLs(Qp).E).A
- Home(MOdMGLg(Qp),E),A

induced by the composition with

_ o
O vt ) (B @ 0F) « TV
As a result, each morphism
SR A, L) [-1] = L[
uniquely factors through a composition
— r_
SO 2L L) 1 = (T s ) = IOV

which induces a commutative diagram with four distinguished triangles

(6.51)
+/
Eﬁ“r A $1a$2;$3
®E ’Up,g >\ $17$27$3
EﬁJr A 31,32 — WS z

\

_|_

by TR4. Hence we deduce that
Eg’-i_()\, ,,?1, .,%2, fg)/ — 'D(/\, .,%1, .,iﬂg, 33)/ — Wé_i[l] i>
or equivalently

Wi, — S5\ A, Lo, L) — DN, A, Lo, L) —
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is a distinguished triangle. On the other hand, it is easy to see that D;(\, £, %5,
%) fits into the distinguished triangle

Wé—i — Eg’-i_()\, ,,?1, .,%2, fg)/ — 'Di()\, ,,?1, .,%2, fg)/ i)
and thus we conclude that
Di(\, L, L2, L) = DN\, L, L2, L) € D’ (Modp(cry(q,),B),0)

by the uniqueness in Proposition 3.2 of [Schr1i]. The last claim follows directly from
[223) and an obvious comparison between our %5 and the #” in Definition 5.19
of [Schrll]. Hence we finish the proof. O

Remark 6.16. Now we explain the meaning of the notation L™(\, %, %, . %).
The philosophy of p-adic local Langlands naturally predicts that one should be
able to construct a family of locally analytic representations depending on three
invariants, such that each representation in the family contains St3" () as a subrep-
resentation. As a direct generalization of the case of GL2(Q,), one firstly construct
a family Z(), 24, %) that depends on two invariants 27,4 € E. It was firstly
observed in [Schrll] that the third invariant should appear in

(6.52) Extr, ) (L), (A, 24, 2))

rather than ExtéLs(Qp)y)\ (L(N), (N, L, %)), purely due to the dimensional rea-
son (cf. Lemma[ZTT]). In order to give a reasonable normalization of third invariant
(in a way which conjecturally matches the third Fontaine-Mazur invariant on Ga-
lois side), one needs a special E-line inside (@52). Then it turns out that the
p-adic dilogarithm function admits a cohomological interpretation (cf. Section 5.3
of [Schr1l]) which gives the required special E-line. Consequently, a family of
abstract derived objects that depends on three invariants is constructed in Defini-
tion 5.19 of [Schril]. Having the family of abstract derived objects in mind, our
family S™in(\ 2, %, #3) admits following characterization (cf. (6.42) and (6.43)
for intuition): each representation in our family is minimal among representations
V' satisfying the following conditions

(i) V contains X¥()\, 4, %) as a subrepresentation for some .%;,.%; € E;

(ii) there exists a complex with terms given by suitable subquotients of V|
such that its associated object in D° (MOdD(GLg(Qp),E),)\) canonically de-
termines a E-line in (G52) of the form ([6.47) for some %5 € E.

7. LOCAL-GLOBAL COMPATIBILITY

In this section, we prove our main result on local-global compatibility (cf. The-
orem [T] and Corollary [ZH]), which roughly says the following: up to suitable
normalization and certain mild global assumption, if L(\) ® g St3° appears in the
Hecke eigenspace associated with a global Galois representation, then there exists
a unique choice of .2, %, % € E such that X+ (), 2, %, ¥3) also appears in
the same Hecke eigenspace.

We are going to borrow most of the notation and assumptions from Section 6
of [Brel7]. We fix embeddings to.: Q — C, Lp: Q — Qp, an imaginary quadratic
CM extension F' of Q and a unitary group G/Q attached to the extension F/Q
such that G xq F' = GL3 and G(R) is compact. If £ is a finite place of Q which

splits completely in F, we have isomorphisms tg.,: G(Qr) — G(F,) = GL3(F,,)
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for each finite place w of F' over £. We assume that p splits completely in F', and
we fix a finite place w), of F' dividing p and therefore G(Q,) = G(Fy,) = GL3(Q,).

We fix an open compact subgroup U? ¢ G(AG™") of the form U? = ][, Uy
where Uy is an open compact subgroup of G(Qy). Note that U? is called sufficiently
small if there exists £ # p such that U, has no non-trivial element with finite order.
For each finite extension E of Q, inside Q_p, we consider the following Og-lattice:

(7.1) S(UP,05) € {f: G(Q\G(AQ)/UP — Og, f continuous}

inside the p-adic Banach space §(U”7 E) = §(U7”7 Ofr)®o, E. The right translation
of G(Qp) on G(Q)\G(AZ)/UP induces a p-adic continuous action of G(Q,) on
S(UP,0p) which makes §(UP,E) an admissible Banach representation of G(Q,)
in the sense of [ST02]. We use the notation S(UP, E)%& C S(UP, E)* following
Section 6 of [Brel7] for the subspaces of locally Q,-algebraic vectors and locally

Q,-analytic vectors inside S (UP, E) respectively. Moreover, we have the following
decomposition:

(7.2) S, B)™ &p Q= P(ry) &g (m, &g Wy)
™

where the direct sum is over the automorphic representations = of G(Aq) over C
and W, is the Q,-algebraic representation of G(Q,) over Q_p associated with the
algebraic representation mo, of G(R) over C via ¢, and (. In particular, each
distinct 7 appears with multiplicity one (cf. the paragraph after (55) of [Brel7] for
further references).

We use the notation D(UP) for the set of finite places £ of Q that are different
from p, split completely in F' and such that Uy, is a maximal open compact subgroup

of G(Qy). Then we consider the commutative polynomial algebra T(U?) &' E[qu,])]

generated by the variables Té,j ) indexed by j € {1,---,n} and w a finite place of
F over a place £ of Q such that £ € D(UP). The algebra T(UP) acts on S(U?, E),

S(UP, E)s and §(UP,E)an via the usual double coset operators. The action of
T(UP) commutes with that of G(Q,).

We fix now a € E*, hence a Deligne-Fontaine module D over Q, = F),, of rank
three of the form
(7.3)
oles) = aey N(es) = e
D = FEey ® Eey ® Eeg, with ole) = plae; and N(e1) = e
oleg) = p2aeg N(eg) = 0

and finally a tuple of Hodge-Tate weights k = (k1 > ko > k3). If p: Gal(F/F) —
GL3(E) is an absolute irreducible continuous representation which is unramified
at each finite place w lying over a finite place ¢ € D(UP), we can associate
with p a maximal ideal m, C T(U?) with residual field E by the usual method
described in the middle paragraph on Page 58 of [Brel7]. We use the nota-
tion *py, for spaces of localization and [m,] for torsion subspaces where x €
{S(Ur. B),5(U?, B)™s, 5(U?, B)™}.
We assume that there exists UP and p such that
(i) p is absolutely irreducible and unramified at each finite place w of F' over
a place £ of Q satisfying ¢ € D(UP);
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(ii) S(U», E)™&[m,] # 0 (hence p is automorphic and p,, & p|Ga1(m/pr) is
potentially semi-stable, cf. [BLGGT14], [Cald]);
(iii) pw, has Hodge-Tate weights k£ and gives the Deligne-Fontaine module D.
By identifying S(U?, E)* with a representation of GL3(Qp) via tg,w,, we have the
following isomorphism up to normalization from (Z2)) and [Cal4]:

(7.4) S(UY, E)¥8[m,] = (L(\) ®E St5° @p (ur(a) @p e?) o det)EBd
for all (UP, p) satistying the conditions (i), (ii) and (iii), where A = (A1, A2, A3) =
(k1 —2,ko — 1, ks) and d(UP, p) > 1 is an integer depending only on U? and p.

Theorem 7.1. We consider UP =[], Ur and p: Gal(F/F) — GL3(E) such that

(i) p is absolutely irreducible and unramified at each finite place w of F lying
above D(UP);
(i) S(UP, B)*&[m,] # 0;
(iii) p has Hodge—Tate weights k and gives the Deligne—Fontaine module D as
(iv) the Hodge filtration on D is non-critical in the sense of (ii) of Remark 6.1.4
of [Brel7l;

(v) only one automorphic representation @ contributes to S(UP, E)?& [m,].
Then there exists a unique choice of 1, %5, L3 € E such that:

(7.5)
Homgr,(q,) (Zmi“""()\,gl,fg,fg) ®p (ur(a) @ €2) o det, §(Up, E)"m[mp])

(U?p)

= Homay,(q,) (f()\) ®p St5° @p (ur(a) ®p e2) o det, S(UP, E)™ [mp]) .

We recall several useful results from [Brel7] and [BH1S]. We recall the upper-
triangular Borel B as well as its radical N from Section23land let II be an arbitrary
admissible locally analytic representation of GL3(Q,). We consider the subspace
II[n = 0] C II consisting of vectors killed by n, and notice that II[n = 0] is stable
under the action of B(Q,) and the smooth action of N(Q,). Hence the subspace
of N(Z,)-invariant 1IV(Z2) C II[[ = 0] is stable under the action of B(Z,) and t.
For each character n: U(t) — E, we write IIN@») [t = 5] C IIVZ) for the subspace
where U(b) acts by n via U(b) — U(t). We note that IIN @) [t = 5] = II[i = 0][t =
nNV(Z») is stable under the action of T (Qp)" where

T(Qy)" “ {t € T(Qy) | IN(Z,)t " € N(Zy)}.
For each character x: T(Q,)* — E*, we write IV (%) [¢ = Ny € IV (@) [¢ = ] for
the generalized eigenspace associated with x.

Proposition 7.2. Suppose that UP = H#p Uy is a sufficiently small open compact

subgroup of G(AQ™"), §(UP,E)"”“ — II — II; is a short exact sequence inside
ReplélLS(Qp)’E, x: T(Qp) — E* is a locally analytic character and n: U(t) — E
its derived character, then we have the following T(Q,)" -equivariant short exact
sequences of finite dimensional E-vector spaces

(S, By N [t = g — TN [t = g — 11} @) [ =
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and B
(S, BN @) [t = ], — TIVNE [t = ), — Hi\'(zp)[t = 1l

Proof. This is Proposition 6.3.3 of [Brel7] and Proposition 4.1 of [BHIS]. O

Proposition 7.3. We fix UP and p as in Theorem [[Il For a locally analytic
character x: T(Qp) — E*, we have

Homy(q,)+ (x @ (ur(@) ©p %) o det, (S(U7, E)[m,])¥ @) 0

if and only if x = o7 .

Proof. This is Proposition 6.3.4 of [Brel7]. O
We recall the notation igL3 (x%) for a smooth principal series for each w € W
from Section 233l Given three locally analytic representations V; for i = 1,2,3
and two surjections V3 — V5 and Vi — Vi, we use the notation Vi xy, Vi for
the fiber product of V4 and V3 over Vi with natural surjections Vi xy, Vs — Vj
and Vi xy, V3 — V3. We also use the shortened notation Vale for the maximally
locally algebraic subrepresentation (given by the set of locally algebraic vectors) of

a locally analytic representation V. We recall the set Q (consisting of irreducible
representations) from (2.6]) and the sentence before it.

Proposition 7.4. We fiz UP and p as in Theorem [[ 1l and assume moreover that
UP is a sufficiently small open compact subgroup of G(AOQO’p). We also fix a non-
split short exact sequence Vi — Vo — V3 inside RepISLS(QpLE such that Vi Qg
(ur(a) ®p £2) o det embeds into S(U?, E)*[m,]. We conclude that:

(i) if V5 € Q is not locally algebraic, then we have an embedding

Vo ®p (ur(e) ®g €2) o det < S(UP, E)*[m,);
(ii) if there exists a surjection
L) @pig () > Vs

for a certain w € Wqri,, then there exists a quotient Vi of

Va xv, (L) @5 15 ()
satisfying
s0CaLy(Q,)(Va) = Ve = T(\) @p St
such that we have an embedding
Vi ®p (ur(a) ®p £2) o det — §(UP,E)an[mp].

Proof. This is an immediate generalization (or rather summary) of Section 6.4 of
[Brel7]. More precisely, part (i) (resp. (ii)) generalizes the Etape 1 (resp. the
Etape 2) of Section 6.4 of [Brel7]. O

Proof of Theorem [T1l. According to the Etape 1 and 2 of Section 6.2 of [Brel7],
we may assume without loss of generality that U? is sufficiently small and it is
sufficient to show that there exists a unique choice of %, %, %5 € E such that
(7.6)

Homer,(q,) (zmin*(A, L, Lo, L) 95 (ur(a) @p £2) o det, S(UP, E)an[mp]) £ 0.
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For each i = 1,2, we recall the representation II*(k, D) constructed in Section 4.5
of [Brel7], which has the following form

(7.7)
1 1
9 . 05153,1',1 —_— C _ 05153—1’51'53—1 —_— 9
S$3—iyl — 0 _— US3=iS3—i — — s3_i,53-iSi
L) ®p vg, | L(\) ®p v

under notation (cf. Section [Z3]) of our paper. We deduce from (7)), ([€44) as well
as the definition of XM+ (N 2, %, %) before Remark B that ™+ (), 2, %,

%) contains a unique subrepresentation yExt! (N, L, Lo, L3) of the form

IT' (k, D)
P

(7.8) L\ ®p St
112 (k, D)

Moreover, SN+ (\ 2 % #3) is uniquely determined by EEth()\,fl,.,%,f;;)
up to isomorphism. It is known by Etape 3 of Section 6.2 of [Brel7] that there is
at most one choice of &, .%,. % € E such that

Homgr,(q,) (ZEth (A, LA, L, L) @p (ur(a) @ %) o det, §(Up’ E)“[‘“p]) # 0,

and thus there is at most one choice of %, %%, %5 € E such that (6] holds. As a
result, it remains to show the existence of £}, %, % € E that satisfies ([LG). We
notice that Y™ (), &, %, %) admits an increasing, separated and exhaustive
filtration Fil, satisfying the following conditions

(i) the representations Y™ (\, %), %, %) and B4+ (), L, %) (cf. their def-
inition after Proposition[G.2land Proposition[G.8]) appear as two consecutive
terms of the filtration;

(ii) each graded piece is either locally algebraic or irreducible.

As a result, the only reducible graded pieces of this filtration is the quotient
SN, L, Ly, L) [SET(N, L, L) = W,
Then we can prove the existence of 4, %, % € E satisfying (L) by reducing to
the isomorphism
(7.9) Homgr,(q,) (Fﬂk+12min’+()‘7$17$2a$3) ®p (ur(e) ®p %)
o det, §(UP,E)a“[mp])
:—> HomGLg(QP) (FilkZ“’i“’+(/\, .,%1, ZQ, fg) X8 (ur(a) ®F 52)
o det, S(U?, E)an[mp])
for each k € Z. If
Gry = Fily XM (N, 2, %, L) [FilR ST (N, 4, %, L)
is not locally algebraic, then ([T3)) is true by part (i) of Proposition [[4 The only
locally algebraic graded pieces of the filtration except L(A) @ g St3° are L(A) @ g v,

L(\) ®E v, and Wy. The isomorphism (Z9) when the graded piece Gry equals
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L(\) ®p vp, or L(A) ®p v, has been treated in Etape 2 of Section 6.4 of [Brel7].
As a result, it remains to show that

(7.10)
Homgr,(q,) (Emin(/\,fl,fg,fg) @p (ur(a) @ €2) o det, §(UP,E)an[mp])

= Homay,(q,) (EH(A, A, D) op (w(e) @p e2) o det, S(U?, E)an[mp])

to finish the proof of Theorem Il Tt follows from (53) of [Brel7] that i 5" (Xsps,)
has the form

and thus there is a surjection
L()\) ®E ZGLS (XETSQSl) - WO'

According to part (ii) of Proposition [[4] we only need to show that any quotient
V of

ve smin(y &1, %, %) xiw, (TO) @555 (X))
satisfying
(7.11) s0CaLs(qQ,) (V) = Vale = T(\) @p St

must have the form
TN, L, L, L)
for certain %, € E. We recall from Proposition and our definition of

Wi\, L, L, L) afterwards that XM\, 24, %, %) fits into a short exact se-
quence

(7.12) SRR, LA, L) = SN, A, L, L) - W
and thus V* fits (by definition of fiber product) into a short exact sequence
(7.13) RN AL, L) = VO - i ()
and in particular
socary(@,) (V) = (L) @5 St3°)
Hence the condition (ZIT]) implies that V fits into a short exact sequence
TN ®pStye L Ve -V

and that

7 (L) @5 St°) NN, 24, %) =0C V°
which induces an injection

SPHN L, L) = V.
Therefore V fits into a short exact sequence
SEYN, A, L) > V> W

and thus corresponds to a line My, inside

EXt%}Lg(Qp),,\ (Wo, S8H(N, 241, %))
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which is two dimensional by Proposition [6.10. Moreover, the condition ([Z.I]) im-
plies that My is different from the line given by the image of

Extgr, g,y (Wo, LN ®5 St5°) <= Extgr,q,x (Wo, S0 (N, 241, %)) -
Hence it follows from Proposition that there exists .24 € E such that
Ve ymN N L L, L),
O

Corollary 7.5. If a locally analytic representation II of the form (L8) is contained
in S(UP, E)*[m,] for a certain UP and p as in Theorem [[1], then there exists
A, L, L5 € E uniquely determined by 11 such that

I — Y™t (N 24, %, L),
Proof. We fix UP and p such that the embedding
(7.14) I — S(UP, E)*[m,]
exists. Then (TI4) restricts to an embedding
L(\) ®p St3° < S(UP, E)™[m,]
which extends to an embedding
(7.15) St (N L, Lo, L) < S(UP, E)*[m,)]

for a unique choice of &, %, % € E according to Theorem [[ Il The embedding
([TI3) induces by restriction an embedding

B (N, A, Lo, L) < S(UP, E)*™[m,)]
and therefore we have
IS8 (\ A, %, %)
by Théoréme 6.2.1 of [Brel7]. In particular, we deduce an embedding
Il — ™0\, A, L, L)

for certain invariants £, %, % € E determined by II. |
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